【题目】如图甲,在平面直角坐标系中,直线分别交x轴、y轴于点A、B,⊙O的半径为个单位长度,点P为直线y=﹣x+6上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,且PC⊥PD.
(1)判断四边形OCPD的形状并说明理由.
(2)求点P的坐标.
(3)若直线y=﹣x+6沿x轴向左平移得到一条新的直线y1=﹣x+b,此直线将⊙O的圆周分得两段弧长之比为1:3,请直接写出b的值.
(4)若将⊙O沿x轴向右平移(圆心O始终保持在x轴上),试写出当⊙O与直线y=﹣x+6有交点时圆心O的横坐标m的取值范围.(直接写出答案)
【答案】(1)四边形OCPD为正方形,见解析;(2)P点坐标为(2,4)或(4,2);(3)b的值为或;(4)
【解析】
(1)根据切线的性质得OC⊥PC,PD⊥PD,加上PC⊥PD,则可判断四边形OCPD为矩形,然后利用OC=OD可判断四边形OCPD为正方形;
(2)利用正方形的性质得,利用勾股定理建立方程,解方程即可得出结论;
(3)利用直线y1=﹣x+b将⊙O的圆周分得两段弧长之比为1:3可得到直线y1=kx+b与坐标的交点A和点B为⊙O与坐标的交点,然后讨论:当点A和点B都在坐标轴的正半轴上或当点A和点B都在坐标轴的负半轴上时,易得b的值为±;
(4)先确定A点和B点坐标,再判断△OAB为等腰直角三角形,则∠ABO=45°,然后讨论:当圆移动到点O1时与直线AB相切,作O1M⊥AB,如图丙,根据切线的性质得O1M=,利用等腰直角三角形的性质得求出O1与O'2的坐标,于是根据直线与圆的位置关系可得到⊙O与直线y=﹣x+6有交点时圆心O的横坐标m的取值范围.
解:(1)四边形OCPD为正方形.
理由如下:连接OC、OD,易知OC⊥PC,OD⊥PD,
又PC⊥PD,
∴四边形OCPD为矩形,
又OC=OD,
∴四边形OCPD为正方形.
(2)连接OP,
为正方形,
,
在直线上,
设,
由得:,
解得:或.
点坐标为或.
(3)平移后的新直线A′B′交圆于A′B′,分得的两段弧长之比为1:3,
分得的劣弧是圆周的,
直线AB与x轴夹角为,,
,
当为圆周时,直线与坐标轴的交点恰好是与坐标轴的交点,
当AB平移到位置时,;
当AB平移到位置时,,
的值为或.
(4)如图,⊙O沿x轴向右平移过程中分别在⊙O1处,⊙O2处与直线y=﹣x+6相切,
则圆在O落在O1,O2之间均满足题意,
在处相切时,为等腰直角三角形,
,.
,同理,在处相切时,,
,
当与直线有交点时,圆心O的横坐标m的取值范围为.
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度为15 m),用篱笆围成一个矩形花园ABCD,中间再用一道篱笆隔成两个小矩形,共用去篱笆42 m.设平行于墙的一边BC长为x m,花园的面积为S m2.
(1)求S与x之间的函数解析式;
(2)问花园面积可以达到120平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知抛物线y=﹣x2+(1﹣m)x﹣m2+12交x轴于点A,交y轴于点B(0,3),顶点C位于第二象限,连接AB,AC,BC.
(1)求抛物线的解析式;
(2)在x轴上是否存在点P,使得△PAB的面积等于△ABC的面积?如果存在,求出点P的坐标.
(3)将△ABC沿x轴向右移动t个单位长度(0<t<1)时,平移后△ABC和△ABO重叠部分的面积为S,求S与t之间的函数关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a<0)经过点A(-1,0)、B(4,0)与y轴交于点C,tan∠ABC=.
(1)求抛物线的解析式;
(2)点M在第一象限的抛物线上,ME平行y轴交直线BC于点E,连接AC、CE,当ME取值最大值时,求△ACE的面积.
(3)在y轴负半轴上取点D(0,-1),连接BD,在抛物线上是否存在点N,使∠BAN=∠ACO-∠OBD?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠ABC=∠BCD=90°,AB=1,AE⊥AD,交BC于点E,EA平分∠BED.
(1)CD的长是_____;
(2)当点F是AC中点时,四边形ABCD的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠BAC=90°,AB=AC=2,点D、E分别是AB、BC的中点,把△BDE绕点B旋转,连接AD、AE、CD、CE,如图2.
(1)求证:△BDE∽△BAC.
(2)求△ABE面积最大时,△ADE的面积.
(3)在旋转过程中,当点D落在△ACE的边所在直线上时,直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,的最小值为0;.当时有;且对于任意实数,.
(1)的对称轴为_________,顶点坐标为_____________;
(2)当时,求的值;
(3)令,试求实数,使得实数最大,当时成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面高为8米的点、处要安装两盏警示灯,则这两盏灯的水平距离是____米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com