精英家教网 > 初中数学 > 题目详情

【题目】两个自由转动的转盘如图所示,一个分为等份,分别标有数字,另一个分为等份,分别标有数字.转盘上有固定指针,同时转动两个转盘,当转盘停止转动后,指针指向的数字即为转出的数字.甲、乙两人制定游戏规则如下:一人先猜数,然后另一人再转动转盘,若猜出的数字与转出的两个数字之和相等,则猜数的人获胜,否则转动转盘的人获胜.猜数者可从下面两种方案中选一种:方案:猜奇数或猜偶数其中的一种;方案:猜的整数倍或猜不是的整数倍其中的一种.

如果你是猜数的游戏者,为了尽可能获胜,你将选择哪种方案,猜该种方案中的哪一种情况?请说明理由;

为了保证参与游戏双方的公平性,你应选择哪种猜数的方案?为什么?

【答案】 我选择的猜数的方案,并且猜和不是的整数倍,因为此时获胜的概率为,获胜的可能性最大为了保证游戏的公平性,应该选择方案

【解析】

(1)列举出所有情况,分别得到相应的概率,比较即可;
(2)应选择获胜概率相同的游戏进而得出答案.

选择的猜数的方案,并且猜和不是的整数倍”.

列树状图如下:

共有种可能结果,且每种结果出现的可能性相同.

方案:由树状图可得,和为奇数以及和为偶数的结果分别是种,

所以(和为奇数)(和为偶数)

方案:由树状图可得,和是的整数倍有种,即为

所以(和是的整数倍(和不是的整数倍

所以,我选择的猜数的方案,并且猜和不是的整数倍,因为此时获胜的概率为,获胜的可能性最大.

为了保证游戏的公平性,应该选择方案

因为(和为奇数)(和为偶数)

所以,选择方案的猜数方法对双方是公平的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知:AD平分∠CAE,AD∥BC.

(1)求证:△ABC是等腰三角形.

(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象分别交于C、D两点,点D(2,﹣3),点A(-2,0).

(1)求一次函数与反比例函数的解析式;

(2)求COD的面积;

(3)直接写出y1>y2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△CEF均为等腰直角三角形,E在△ABC内,∠CAE+∠CBE=90°,连接BF.

  (1)求证:△CAE∽△CBF

(2)若BE=1,AE=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点EF分别在BCCD上,△AEF是等边三角形,连接ACEFG,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤SCEF=2SABE.其中正确结论有____.(填序号即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1cm,AB=3cm,BC=5cm,动点P从点B出发以1cm/s的速度沿BC的方向运动,动点Q从点C出发以2cm/s的速度沿CD方向运动,P、Q两点同时出发,当Q到达点D时停止运动,点P也随之停止,设运动的时间为ts(t>0)

(1)求线段CD的长;

(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴交于点A10),顶点坐标(1n),与y轴的交点在(03),(04)之间(包含端点),则下列结论:abc03a+b0③﹣a1a+bam2+bmm为任意实数);一元二次方程 有两个不相等的实数根,其中正确的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC△CDE均为等腰直角三角形,点BCD在一条直线上,点MAE的中点,下列结论:①tan∠AEC=②SABC+SCDE≧SACE③BM⊥DM④BM=DM,正确结论的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半.

如图(1):在梯形ABCD中:AD∥BC

∵EFABCD的中点,∴EF∥AD∥BCEF=AD+BC

材料二:经过三角形一边的中点与另一边平行的直线必平分第三边

如图(2):在△ABC中:∵EAB的中点,EF∥BC

∴FAC的中点

请你运用所学知识,结合上述材料,解答下列问题.

如图(3)在梯形ABCD中,AD∥BCAC⊥BDOEF分别为ABCD的中点,∠DBC=30°

1)求证:EF=AC

2)若OD=OC=5,求MN的长.

查看答案和解析>>

同步练习册答案