精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,作EG⊥CFG,交ACH.已知AB=6,设BC=x,AF=y.

(1)求证:∠CAB=∠CEG;

(2)①yx之间的函数关系式. ②x=   时,点FAB的中点;

(3)当x为何值时,点F的中点,以A、E、C、F为顶点的四边形是何种特殊四边形?试说明理由.

【答案】(1)证明见解析(2)①y=﹣x2+6②3(3)2

【解析】

(1)连接EF,由于EG经过圆心E,且与弦CF垂直,由垂径定理知∠CEF=2CEG,而圆周角∠CAF和圆心角∠CEG所对的弧正好相同,由圆周角定理知∠CEG=2CAF,由此得证;

(2)①设⊙O的半径为r,连接EA、EF;由于EA=EF,那么E点在AF的垂直平分线上,因此AF=2DE,即y=2(6﹣r),所以只需求出r、x的关系式即可;RtADE中,AD=x,用r可表示出AE、DE的长,即可由勾股定理求得r、x的关系式,由此得解;②当FAB中点时,AF=y=3,将其代入①的函数关系式中,即可求得x的值;

(3)当F是弧AC的中点时,EF垂直平分AC,可得AE=EC,AF=FC;易知∠AEF=CEF,而∠CEF和∠AFE是平行线的内错角,等量代换后可得∠AEF=AFE=FAE,由此可证得EAF是正三角形,由此可证得四边形AECF的四边都相等,即四边形AECF是菱形;此时∠CFB=EAF=60°,在RtCFB中,易知BF=CF,而AF=FC,那么BF即为AF的一半、AB的三分之一,由此可求得BF的长,进而可得到BC(即x)的长.

(1)连接EF(如图1),

∵点A、F、C在以点E为圆心,EC为半径的圆上,

EF=EC,

EGCF,

∴∠CEF=2CEG,

∵∠CEF=2CAB,∴∠CAB=CEG;

(2)(如图2)①连接EF、EA,

设⊙E的半径为r,

RtADE中,EA=r,DE=6﹣r,AD=x,

x2+(6﹣r)2=r2,r=x2+3,

EF=EA,

AF=2DE,

y=2(6﹣r)=﹣x2+6;

②点FAB的中点时,y=3,即﹣x2+6=3,

x=

(3)(如图3)

x=时,F是弧AC的中点.此时四边形AECF菱形;

理由如下:

∵点F是弧AC的中点,

∴∠AEF=CEF,AF=CF,

ABCD,

∴∠AFE=CEF,

∴∠AEF=AFE,

AE=AF,

AE=EF,

AE=AF=CE=CF,

∴△AEFCEF都是正三角形,

∴四边形AECF是菱形,且∠CEF=60°,

∴∠BCF=30°,BF=CF=AF=AB=2,BC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】201612月底我国首艘航空母舰辽宁舰与数艘去驱航舰组成编队,携多架歼﹣15舰载战斗机和多型舰载直升机开展跨海区训练和试验任务,在某次演习中,预警直升机A发现在其北偏东60°,距离160千米处有一可疑目标B,预警直升机立即向位于南偏西30°距离40千米处的航母C报告,航母舰载战斗机立即升空沿北偏东53°方向向可疑目标飞去,请求出舰载战斗机到达目标的航程BC.

(结果保留整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BEAD交于点F

⑴求证:ΔABFΔEDF

⑵若将折叠的图形恢复原状,点FBC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABC外接圆⊙O的直径,且∠BAE=C.

(1)求证:AE与⊙O相切于点A;

(2)若AEBC,BC=2,AC=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).

(1)若ABCA1B1C1关于原点O成中心对称图形,画出A1B1C1

(2)将ABC绕着点A顺时针旋转90°,画出旋转后得到的AB2C2

(3)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+ P C1的最小值为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC、BD相交于点O,∠BCD=60°,则下列4个结论:梯形ABCD是轴对称图形;②BC=2AD;③梯形ABCD是中心对称图形;④AC平分∠DCB,其中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD内有一点P,若PA=1,PB=2,PC=3.

(1)画出△ABP绕点B顺时针旋转90°得到的△CBE;

(2)∠APB度数;

(3)求正方形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。

(1)求证:CD是M的切线;

(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求PDM的周长最小时点P的坐标;

(3)在(2)的条件下,当PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在中,,点上,且

当点为线段的中点,点分别在线段上时(如图).过点于点,请探索之间的数量关系,并说明理由;

①点分别在线段上,如图时,请写出线段之间的数量关系,并给予证明.

②当点分别在线段的延长线上,如图时,请判断①中线段之间的数量关系是否还存在.(直接写出答案,不用证明)

查看答案和解析>>

同步练习册答案