精英家教网 > 初中数学 > 题目详情
6.要调查某校学生周日的睡眠时间,下列调查对象选取最合适的是(  )
A.选取该校50名女生B.选取该校50名男生
C.选取该校一个班级的学生D.随机选取该校50名学生

分析 根据调查数据要具有随机性,进而得出符合题意的答案.

解答 解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.
故选:D.

点评 本题考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,点E在直线DC上,点B在直线AF上,若∠1=∠2,∠3=∠4,则∠A=∠D,请说明理由.
解:∵∠1=∠2(已知)
∠2=∠DME(对顶角相等)
∴∠1=∠DME
∴BC∥EF(同位角相等,两直线平行)
∴∠3+∠B=180°(两直线平行,同旁内角互补)
又∵∠3=∠4(已知)
∴∠4+∠B=180°
∴DE∥AB(同旁内角互补,两直线平行)
∴∠A=∠D(两直线平行,内错角相等).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,Rt△ABC中,∠ACB=90°,∠B=30°,点D为AB的中点,则∠ACD=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知x-y=3,y-z=1,求x2+y2+z2-xy-yz-zx的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AD平分∠BAC,其中∠B=35°,∠ADC=82°,求∠BAC,∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)计算:$\sqrt{9}$-($\sqrt{5}$-π)0+($\frac{1}{5}$)-1
(2)已知3x2-12=0,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.为了帮助四川雅安芦山县遭到地震的灾区重建家园,某公司号召员工自愿捐款,请你根据下面两位经理的对话,求出第一次捐款的人数.
经理甲:第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元;
经理乙:第一次捐款总额为20000元,第二次捐款总额为56000元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.阅读下列材料:
小铭和小雨在学习过程中有如下一段对话:
小铭:“我知道一般当m≠n时,m2+n≠m+n2.可是我见到有这样一个神奇的等式:($\frac{a}{b}$)2+$\frac{b-a}{b}$=$\frac{a}{b}$+($\frac{b-a}{b}$)2(其中a,b为任意实数,且b≠0).你相信它成立吗?”
小雨:“我可以先给a,b取几组特殊值验证一下看看.”
完成下列任务:
(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);
①当a=1,b=1时,等式成立(填“成立”或“不成立”);
②当a=1,b=2时,等式成立(填“成立”或“不成立”).
(2)对于任意实数a,b(b≠0),通过计算说明($\frac{a}{b}$)2+$\frac{b-a}{b}$=$\frac{a}{b}$+($\frac{b-a}{b}$)2是否成立.

查看答案和解析>>

同步练习册答案