精英家教网 > 初中数学 > 题目详情

下列关于方程的两个根的说法中正确的是

[  ]

A.符号相同
B.符号相反
C.有一根为0
D.符号无法确定
答案:B
解析:

二次项系数与常数项异号,可知两根之积为负,因此两根一定异号.


提示:

题目考查的是根与系数之间的关系


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

关于x的一元二次方程ax2+bx+c=0中,当b2-4a≥0,方程的两个根x1和x2不相等或相等,而且有x1+x2=-
b
a
,x1•x2=
c
a
;当b2-4ac<0时,方程无实数解.比如方程x2-7x+12=0的两根x1=3,x2=4,则有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程无解.根据以上情况解下列问题.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是关于x的方程x2-(m-1)x+(m+4)=0的两根,当AB=5时:(1)求m的值;(2)求a和b.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
x1x2=
c
a
.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,b2-4ac=
 

(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

下列关于方程的两个根的说法中正确的是

[  ]

A.符号相同
B.符号相反
C.有一根为0
D.符号无法确定

查看答案和解析>>

同步练习册答案