精英家教网 > 初中数学 > 题目详情
(2004•常州)如图,A、B、C、D是⊙O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.

【答案】分析:此题能够发现所求的线段和已知的线段能够放到两个相似三角形,即三角形ABE和三角形ADB中.根据等弧所对的圆周角相等和公共角即可证明相似,再根据相似三角形的对应边的比相等得到要求的线段的长.
解答:解:∵在⊙O中,AB=AC,
∴弧AB=弧AC.
∴∠ABC=∠D.
又∠BAE=∠DAB,
∴△ABE∽△ADB.
,即AB2=AE•AD=2×6=12.
∴AB=2
点评:在圆中,能够根据弦相等发现弧相等,进一步得到角相等.掌握相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2004•常州)如图,A、B、C、D是⊙O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(07)(解析版) 题型:填空题

(2004•常州)如图,在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,则BC=    cm,∠ABD=    度.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省常州市中考数学试卷(解析版) 题型:选择题

(2004•常州)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则AE:EC的值为( )

A.0.5
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省常州市中考数学试卷(解析版) 题型:填空题

(2004•常州)如图,在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,则BC=    cm,∠ABD=    度.

查看答案和解析>>

同步练习册答案