精英家教网 > 初中数学 > 题目详情
7.如图,AB是⊙O的直径,C是⊙O上一点,CD⊥AB于D,且AB=8,DB=2.
(1)求证:△ABC∽△ACD;
(2)求图中阴影部分的面积.

分析 (1)根据两角对应相等的两个三角形相似即可证明.
(2)先利用△ABC∽△ACD,得AC2=AD•AB=48,再利用勾股定理求出CD,根据S=S半圆-S△ABC即可解决问题.

解答 (1)证明:∵AB是直径,
∴∠ACB=90°,
∵CD⊥AB,
∴∠ADC=90°,
∴∠ADC=∠ACB,∠B+∠BAC=90°,∠DCA+∠CAB=90°,
∴∠B=∠ACD,
∴△ABC∽△ACD.
(2)解:∵△ABC∽△ACD,
∴$\frac{AB}{AC}$=$\frac{AC}{AD}$,
∴AC2=AD•AB=6×8=48,
∴CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=$\sqrt{48-36}$=2$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$•AB•CD=$\frac{1}{2}$×$8×2\sqrt{3}$=8$\sqrt{3}$,
∴S=S半圆-S△ABC=8$π-8\sqrt{3}$.

点评 本题考查相似三角形的判定和性质、圆的有关知识、勾股定理等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于基础题,中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.已知下列命题
①若|a|=|b|,则a2=b2
②若a>0,b>0,则a+b>0
③到线段两端点距离相等的点在这条线段的垂直平分线上
④矩形的对角线相等
其中原命题与逆命题均为真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在8×5的正方形网格中,每个小正方形的边长都为1,点A在格点(网格线的交点)上,且点A的坐标为(0,4).
(1)将线段OA沿x轴的正方向平移4个单位长度,画出平移后的线段CB;
(2)取(1)中线段BC的中点D,先画△ABD,再将△ABD绕点A顺时针旋转90°,画出旋转后的△AEG;
(3)在x轴上有点F,若将△AFD沿AF折叠刚好与△AFG重合,请直接写出∠DAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:
①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD=AC•BD.
其中正确的序号是(  )
A.①②B.③④C.②④D.②③

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使$\widehat{AB}$和$\widehat{AC}$都经过圆心O,则阴影部分的面积是⊙O面积的$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.一组数据2、9、5、5、8、5、8的中位数是(  )
A.2B.5C.8D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.李老师对她所教学生的学习兴趣进行了一次抽样调查,她把学生的学习兴趣分为三个层次:很感兴趣;较感兴趣和不感兴趣;并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,帮助李老师解答下列问题:

(1)此次抽样调查中,共调查了200名学生;
(2)补全条形统计图,并在扇形统计图中填上百分数;
(3)求图②中表示“不感兴趣”部分的扇形所对的圆心角;
(4)根据抽样调查的结果,请你估计李老师所在的学校800名学生中大约有多少名学生对学习感兴趣(包括“很感兴趣”和“较感兴趣”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在边长为2的正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.
(1)判断四边形BMNP的形状,并加以证明;
(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,求PN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.将一张长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,若这个三角形面积的最小值为4.5cm2时,则纸片的宽为3.

查看答案和解析>>

同步练习册答案