【题目】如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是( )
A. 2B. 3C. 4D. 5
【答案】C
【解析】
利用正方形的性质和折叠的性质可得∠AED=∠FED,AD=FD,AE=EF,∠A=∠DFE,即可判定①;证明Rt△DFG≌Rt△DCG,即可判定②;证明△FHB∽△EAD,即可判定③;设FG=CG=x,则BG=6﹣x,EG=3+x,再利用勾股定理即可判定④;设FH=a,则HG=4﹣2a,再利用勾股定理即可判定⑤
∵正方形ABCD中,AB=6,E为AB的中点
∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°
∵△ADE沿DE翻折得到△FDE
∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°
∴BE=EF=3,∠DFG=∠C=90°
∴∠EBF=∠EFB
∵∠AED+∠FED=∠EBF+∠EFB
∴∠DEF=∠EFB
∴BF∥ED
故结论①正确;
∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG
∴Rt△DFG≌Rt△DCG
∴结论②正确;
∵FH⊥BC,∠ABC=90°
∴AB∥FH,∠FHB=∠A=90°
∵∠EBF=∠BFH=∠AED
∴△FHB∽△EAD
∴结论③正确;
∵Rt△DFG≌Rt△DCG
∴FG=CG
设FG=CG=x,则BG=6﹣x,EG=3+x
在Rt△BEG中,由勾股定理得:32+(6﹣x)2=(3+x)2
解得:x=2
∴BG=4
∴tan∠GEB=
故结论④正确;
∵△FHB∽△EAD,且
∴BH=2FH
设FH=a,则HG=4﹣2a
在Rt△FHG中,由勾股定理得:a2+(4﹣2a)2=22
解得:a=2(舍去)或a=
∴S△BFG=×4×=2.4
故结论⑤错误;
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,直径DE⊥AB于点F,交BC于点 M,DE的延长线与AC的延长线交于点N,连接AM.
(1)求证:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以点M(0, )为圆心,以 长为半径作⊙M交x轴于A,B两点,交y轴于C,D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.
(1)求出CP所在直线的解析式;
(2)连接AC,请求△ACP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,则DM的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,.P是底边上的一个动点(P与B、C不重合),以P为圆心,为半径的与射线交于点D,射线交射线于点E.
(1)若点E在线段的延长线上,设,求y关于x的函数关系式,并写出x的取值范围.
(2)连接,若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(I)圆中最长的弦是________;
(Ⅱ)如图①,AB 是⊙O 的弦,AB=8,点 C 是⊙O 上的一个动点,且∠ACB=45°, 若点 M、N 分别是 AB、AC 的中点,则 MN 长度的最大值是___;
(Ⅲ)如图②,△ABC 中,∠BAC=60°,∠ABC=45°,AB=4,D 是边 BC 上的一个动点,以 AD 为直径画⊙O,分别交 AB、AC 于点 E、F,连接 EF,则线段 EF 长度的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn.
(1)请用列表或画树状图的方法表示取出数字的所有结果;
(2)求正比例函数y=kx的图象经过第一、三象限的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com