精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠C=30°,∠BAC=105°,AD⊥BC,垂足为D,AC=2cm,求BC的长(答案可带根号)

【答案】分析:在△ABC中,AD⊥BC,则在△ABD和△ACD中,根据三角函数就可以求出BC的长.
解答:解:在△ABC中,AD⊥BC,∴△ADC为直角三角形.
∵∠C=30°,∴AD=AC
∵AC=2,∴AD=1cm
∴DC==cm;
又∵∠BAC=105°,∠DAC=60°,
∴∠BAD=45°
即Rt△ABD是等腰直角三角形,
∴BD=1
故BC=BD+DC=(1+)cm
答:BC的长为(1+)cm.
点评:本题主要考查了三角函数的定义以及勾股定理,利用已知得出Rt△ABD是等腰直角三角形是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案