精英家教网 > 初中数学 > 题目详情
如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是 _________ ,请说明理由;
(2)如图2,已知D(,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;
(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?
解:(1)设AC的中点为E,连接OE并延长至B,使得BE=OE;连接AC,AB,则△ABC为所求作的△AOC的中心对称图形.
∵A(2,0),C(0,2),
∴OA=OC,
∵△ABC是△AOC的中心对称图形,
∴AB=OC,BC=OA,
∴OA=AB=BC=OC,
∴四边形OABC是正方形;
(2)设经过点A、C、D的抛物线解析式为y=ax2+bx+c,
∵A(2,0),C(0,2),D(,0),
,解得a=-2,b=3,c=2,
∴抛物线的解析式为:y=-2x2+3x+2;由(1)知,四边形OABC为正方形,
∴B(2,2),
∴直线BC的解析式为y=2,
令y=-2x2+3x+2=2,解得x1=0,x2=
∴点E的坐标为(,2).
(3)在点P的运动过程中,有三种情形使得△AON为等腰三角形,
如图②所示:
①△AON1.此时点P与点B重合,点N1是正方形OABC对角线的交点,且△AON1为等腰直角三角形,
则此时点P运动路程为:x=AB=2;
②△AON2.此时点P位于B﹣C段上.
∵正方形OABC,OA=2,
∴AC=2
∵AN2=OA=2,
∴CN2=AC﹣AN2=2﹣2.
∵AN2=OA,
∴∠AON2=∠AN2O,
∵BC∥OA,
∴∠AON2=∠CP2N2,又∠AN2O=∠CN2P2
∴∠CN2P2=∠CP2N2
∴CP2=CN2=2﹣2.
此时点P运动的路程为:x=AB+BC﹣CP2=2+2﹣(2﹣2)=6﹣2
③△AON3.此时点P到达终点C,P、C、N三点重合,△AON3为等腰直角三角形,
此时点P运动的路程为:x=AB+BC=2+2=4.
综上所述,当x=2,x=6﹣2或x=4时,△AON为等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在直角坐标系中,反比例函数y=
kx
(k>0)
的图象与矩形AOBC的边AC、BC分别相交于点E、F,且点C坐标为(4,3),将△CEF沿EF对折后,C点恰好落在OB上.
(1)求k的值;
(2)如图2,在直角坐标系中,P点坐标为(2,-3),请在双曲线上找两点M、N,使四边形OPMN是平行四边形,求M、N的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为
(-1,3)
(-1,3)
,点E的坐标为
(-3,2)
(-3,2)

(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.
(3)若正方形和抛物线均以每秒
5
个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.
②运动停止时,求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在Rt△OAB中,∠B=90°,AO=
12
,BA=2.把△OAB按如图方式放置在直角坐标系中,使点O与原点重合,点A落在x轴正半轴上.求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直角坐标系中,A点的坐标为(a,0),B点的坐标为(0,b),且a、b满足
a-b
+
a2-144
a+12
=0

(1)求证:∠OAB=∠OBA.
(2)如图2,△OAB沿直线AB翻折得到△ABM,将OA绕点A旋转到AF处,连接OF,作AN平分∠MAF交OF于N点,连接BN,求∠ANB的度数.
(3)如图3,若D(0,4),EB⊥OB于B,且满足∠EAD=45°,试求线段EB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC在直角坐标系中,
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,写出A1、B1、C1的坐标
(2)求出三角形ABC的面积.

查看答案和解析>>

同步练习册答案