精英家教网 > 初中数学 > 题目详情
如图,对称轴为直线x=
7
2
的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
(1)因为抛物线的对称轴是x=
7
2

设解析式为y=a(x-
7
2
2+k.
把A,B两点坐标代入上式,得
a(6-
7
2
)2+k=0
a(0-
7
2
)2+k=4

解得a=
2
3
,k=-
25
6

故抛物线解析式为y=
2
3
(x-
7
2
2-
25
6
,顶点为(
7
2
,-
25
6
).

(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=
2
3
(x-
7
2
2-
25
6

∴y<0,
即-y>0,-y表示点E到OA的距离.
∵OA是OEAF的对角线,
∴S=2S△OAE=2×
1
2
×OA•|y|=-6y=-4(x-
7
2
2+25.
因为抛物线与x轴的两个交点是(1,0)和(6,0),
所以自变量x的取值范围是1<x<6.
①根据题意,当S=24时,即-4(x-
7
2
2+25=24.
化简,得(x-
7
2
2=
1
4

解得x1=3,x2=4.
故所求的点E有两个,
分别为E1(3,-4),E2(4,-4),
点E1(3,-4)满足OE=AE,
所以平行四边形OEAF是菱形;
点E2(4,-4)不满足OE=AE,
所以平行四边形OEAF不是菱形;
②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,
此时点E的坐标只能是(3,-3),
而坐标为(3,-3)的点不在抛物线上,
故不存在这样的点E,使平行四边形OEAF为正方形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1的顶点坐标是D(1,4),且经过点C(2,3),又与x轴交于点A、E(点A在点E左边),与y轴交于点B.
(1)抛物线C1的表达式是______;
(2)四边形ABDE的面积等于______;
(3)问:△AOB与△DBE相似吗?并说明你的理由;
(4)设抛物线C1的对称轴与x轴交于点F.另一条抛物线C2经过点E(C2与C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,并且以M、G、E为顶点的三角形与以点D、E、F为顶点的三角形全等,求a、b的值.(只需写出结果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-
1
3
x+2
与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).
(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN-CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=-
1
2
x2+mx+n的图象与y轴交于点N,其顶点M在直线y=-
3
2
x上运动,O为坐标原点.

(1)当m=-2时,求点N的坐标;
(2)当△MON为直角三角形时,求m、n的值;
(3)已知△ABC的三个顶点的坐标分别为A(-4,2),B(-4,-3),C(-2,2),当抛物线y=-
1
2
x2+mx+n在对称轴左侧的部分与△ABC的三边有公共点时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),抛物线y=ax2-3ax+b经过A(-1,0),C(3,-4)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线L:y=kx+1(k≠0)将四边形ABCD的面积分成相等的两部分,求直线L的解析式;
(3)如图(2),过点E(1,1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNT(点M、N、T分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t-1.5t2.飞机着陆后滑行______秒才能停下来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息:

(1)请解答小华提出的问题;
(2)能否获得比800元更多的利润?若能,请举例说明;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3米,最高3.5米的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5米.为设计这条能使上述厢式货车恰好安全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式、隧道的跨度AB和拱高OC.

查看答案和解析>>

同步练习册答案