精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,直线AB: 交y轴于点A,交x轴于点B,过点E(2,0)作x轴的垂线EF交AB于点D,点P是垂线EF上一点,且S△ADP=2,以PB为边在第一象限作等腰Rt△BPC,则点C的坐标为_________

【答案】(6,4)(6,8)(10,4)

【解析】y=0时, =0,解得:x=6,所以B60),

x=2时, =2,所以D22),

SABP=2时, ×2·PD=2 ,解得PD=2

∴点P(2,4),

∴PE=BE=4,

∴∠EPB=∠EBP=45°;

1种情况,如图1,∠CPB=90°,BP=PC,

过点CCN⊥直线x=2于点N,

∵∠CPB=90°,∠EPB=45°,

∴∠NPC=∠EPB=45°.

又∵∠CNP=∠PEB=90°,BP=PC,

∴△CNP≌△BEP,

∴PN=NC=EB=PE=4,

∴NE=NP+PE=4+4=8,

∴C(6,8);

2种情况,如图2∠PBC=90°,BP=BC,

过点CCF⊥x轴于点F.

∵∠PBC=90°,∠EBP=45°,

∴∠CBF=∠PBE=45°.

又∵∠CFB=∠PEB=90°,BC=BP,

∴△CBF≌△PBE.

∴BF=CF=PE=EB=4,

∴OF=OB+BF=6+4=10,

∴C(10,4);

3种情况,如图3,∠PCB=90°,CP=EB,

∴∠CPB=∠EBP=45°,

在△PCB和△PEB中,CP=EB,∠CPB=∠EBP,BP=BP,

∴△PCB≌△PEB(SAS),

∴PC=CB=PE=EB=4,

∴C(6,4);

∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(64)(68)(104)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BMx轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.

(1)求该反比例函数和一次函数的解析式;

(2)连接MC,求四边形MBOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求下列各式中的x的值:

18x31250

2(x3)29=0

【答案】1x=-;2x1=6x2=0.

【解析】试题分析:(1)立方根定义解方程.(2)平方根定义解方程.

试题解析:(1)8x31250,

x3=,

x=-.

2(x3)29=0,

(x3)2=9,

x-3=,

x1=6x2=0.

型】解答
束】
19

【题目】1)已知某数的平方根是 的立方根是,求的平方根.

2)已知y=+-8,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索:小明和小亮在研究一个数学问题:已知ABCD,AB和CD都不经过点P,探索P与A,C的数量关系.

发现:在图1中,小明和小亮都发现:APC=A+C;

小明是这样证明的:过点P作PQAB

∴∠APQ=A(

PQAB,ABCD.

PQCD(

∴∠CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

小亮是这样证明的:过点作PQABCD.

∴∠APQ=A,CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是

应用:

在图2中,若A=120°C=140°,则P的度数为

在图3中,若A=30°C=70°,则P的度数为

拓展:

在图4中,探索P与A,C的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②∠DCP=45°;③BP垂直平分CE;④GF+ FC =GA;其中正确的判断有______________.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:如图,数轴上两个动点 MN 开始时所表示的数分别为﹣105MN 两点各自以一定的速度在数轴上运动,且 M 点的运动速度为2个单位长度/s

1MN 两点同时出发相向而行,在原点处相遇,求 N 点的运动速度

2MN 两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?

3MN 两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发沿同方向运动,且在运动过程中,始终有 CNCM=12若干秒后,C 点在﹣12 处,求此时 N 点在数轴上的位置

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)3x25x4

(2)3(2x3)(x5)2(72x)

(3)x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】补全下列各题解题过程.

如图,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度数.

:∵EF∥AD 已知

∴∠2 = ( )

∵∠1=∠2 ( )

∴∠1=∠3 ( )

∴AB∥ ( )

∴∠BAC + = 180°( )

∵∠BAC = 70°(已知

∴∠AGD = _ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+ax+a﹣2=0.
(1)若该方程的一个根为2,求a的值及该方程的另一根.
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.

查看答案和解析>>

同步练习册答案