精英家教网 > 初中数学 > 题目详情
关于抛物线y=(x-1)2+2,下列结论中不正确是(  )
分析:由抛物线解析式得到顶点坐标,进而确定出对称轴为直线x=1,选项A正确;根据抛物线开口向上,得到x小于1时,抛物线为减函数,即y随x的增大而减小,得到选项B正确;再求出b2-4ac的值小于0,得到抛物线与x轴没有交点,选项C正确,令抛物线解析式中x=0,求出y=3,得到抛物线与y轴交点为(0,3),故选项D错误.
解答:解:抛物线y=(x-1)2+2,
∴顶点坐标为(1,2),对称轴为直线x=1,开口向上,
∴x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,
又y=(x-1)2+2=x2-2x+3,令x=0,求出y=3,
∴b2-4ac=4-12=-8<0,抛物线与y轴的交点为(0,3),
∴抛物线与x轴没有交点,
则选项中错误的是D.
故选D.
点评:此题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c与x轴的交点由b2-4ac来决定,当b2-4ac<0,抛物线与x轴没有交点;当b2-4ac=0,抛物线与x轴只有一个交点;当b2-4ac>0时,抛物线与x轴有两个交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、关于抛物线y=(x-1)2+3的描述错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,关于抛物线y=(x-1)2-2,下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线过点A(-1,0)、B(4,0)、C(
11
5
,-
12
5
)

(1)求抛物线对应的函数关系式及对称轴;
(2)点C′是点C关于抛物线对称轴的对称点,证明直线y=-
4
3
(x+1)
必经过点C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为2,将此正方形置于直角坐标系xOy中,使AB在x轴上,对角线的交点E在直线y=x-1上.
(1)按题设条件画出直角坐标系xOy,并求出点A、B、C、D的坐标;
(2)若直线y=x-1与y轴相交于G点,抛物线y=ax2+bx+c过G、A、B三点,求抛物线的解析式及点G关于抛物线对称轴的对称点M的坐标;
(3)在(2)中的抛物线上且位于X轴上方处是否存在点P,使三角形PAM的面积最大?若存在,求出符合条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案