精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
5
.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.
(1)由题意可知C(0,-3),-
b
2a
=1,
∴抛物线的解析式为y=ax2-2ax-3(a>0),
过M作MN⊥y轴于N,连接CM,则MN=1,CM=
5

∴CN=2,于是m=-1.
同理可求得B(3,0),
∴a×32-2a×3-3=0,得a=1.
∴抛物线的解析式为y=x2-2x-3.

(2)由(1)得A(-1,0),E(1,-4),B(3,0),C(0,-3).
∵M到AB,CD的距离相等,OB=OC,
∴OA=OD,
∴点D的坐标为(0,1),
∴在Rt△BCO中,BC=
OB2+OC2
=3
2

OB
OD
=
3
1
=3

在△BCE中,∵BC2+CE2=(32+32)+[(1-0)2+(-4+3)2]=20=(3-1)2+(0+4)2=BE2
∴△BCE是Rt△
BC
CE
=
3
2
2
=3

OB
OD
=
BC
CE

OB
BC
=
OD
CE

∴Rt△BODRt△BCE,得∠CBE=∠OBD=β,
因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=
CO
BC
=
2
2


(3)显然Rt△COARt△BCE,此时点P1(0,0).
过A作AP2⊥AC交y正半轴于P2
由Rt△CAP2Rt△BCE,得P2(0,
1
3
).
过C作CP3⊥AC交x正半轴于P3,由Rt△P3CARt△BCE,得P3(9,0).
故在坐标轴上存在三个点P1(0,0),P2(0,
1
3
),P3(9,0),
使得以P、A、C为顶点的三角形与△BCE相似.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的两个根,且x21+x22=10.
(1)求A、B两点的坐标;
(2)求抛物线的解析式及点C的坐标;
(3)在抛物线上是否存在点P,使三角形PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为Α(1,0),B(3,0),
(1)求此抛物线的解析式;
(2)设此抛物线的顶点为D,与y轴的交点为C,试求四边形ΑBCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入12345
输出25101726
若输入的数据是x时,输出的数据是y,y是x的二次函数,则y与x的函数表达式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线y=
5
4
作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点F(1,
3
4
)
,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立?若存在请求出t值,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,有一座抛物线形的拱桥,桥下的正常水位为OA,此时水面宽为40米,水面离桥的最大高度为16米,则拱桥所在的抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c经过点(-1,0),(3,0)(0,-3),求它的开口方向、对称轴和顶点坐标,并画出草图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+px+q的顶点M在第一象限,与x轴和y轴的正半轴分别交于点A、B,其中A的坐标为(2,0),且四边形AOMB的面积为
11
4
,求p、q的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.
(1)当x=______时,代数式-2(x-1)2+3有最______(填写大或小)值为______.
(2)当x=______时,代数式-2x2+4x+3有最______(填写大或小)值为______.
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案