【题目】解方程:
(1)(x+1)(x﹣7)=0
(2)x2﹣4x+3=0
(3)2x2﹣4x+5=0
(4)x2﹣3x﹣1=0
【答案】(1)x1=﹣1,x2=7;(2)x1=1,x2=3;(3)原方程无实数解;(4)x1=,x2=.
【解析】
(1)根据因式分解法,可得答案;
(2)根据因式分解法,可得答案;
(3)根据公式法,可得答案;
(4)根据公式法,可得答案.
解:(1)(x+1)(x﹣7)=0
∴x+1=0或x﹣7=0,
解得:x1=﹣1,x2=7;
(2)x2﹣4x+3=0
(x﹣1)(x﹣3)=0,
∴x﹣1=0或x﹣3=0,
解得x1=1,x2=3;
(3)2x2﹣4x+5=0,
a=2,b=﹣4,c=5,
△=b2﹣4ac=16﹣4×2×5=﹣24<0,
∴原方程无实数解;
(4)x2﹣3x﹣1=0,
∵a=1,b=﹣3,c=﹣1,
∴△=b2﹣4ac=9﹣4×1×(﹣1)=13>0,
∴x==,
∴x1=,x2=.
科目:初中数学 来源: 题型:
【题目】两建筑物AB和CD的水平距离为30米,如图所示,从A点测得太阳落山时,太阳光线AC照射到AB后的影子恰好在CD的墙角时的角度∠ACB=60°,又过一会儿,当AB的影子正好到达CD的楼顶D时的角度∠ADE=30°,DE⊥AB于E,则建筑物CD的高是多少米?(≈1.732,结果保留两位有效数字)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.
(1)求证:AH=BE;
(2)∠AGO的度数是否为定值?说明理由;
(3)若∠OGC=90°,BG=,求△OGC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.
(1)求证:四边形AECD是菱形;
(2)若AB=6,BC=10,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知抛物线经过,,顶点为.
求该抛物线的表达方式及点的坐标;
将中求得的抛物线沿轴向上平移个单位,所得新抛物线与轴的交点记为点.当时等腰三角形时,求点的坐标;
若点在中求得的抛物线的对称轴上,联结,将线段绕点逆时针转得到线段,若点恰好落在中求得的抛物线上,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是( )
A.AH=2DFB.HE=BEC.AF=2CED.DH=DF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是矩形,为原点,、的坐标分别为、,是边上的一个动点(不与,重合),过点的反比例函数的图象与边交于点.
当时,写出点、的坐标;
求的值;
是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出此时点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为 .
(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子A′B,D′C的长度和为多少?
(3)有n个边长为a的正方形按图③摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com