精英家教网 > 初中数学 > 题目详情
10.下列说法正确的有(  )
①每个命题都有逆命题;②互逆命题的真假性一致;③每个定理都有逆定理.
A.0个B.1个C.2个D.3个

分析 根据逆命题的定义可对①③进行判断;根据互为逆命题的两个命题的真假没有关系可对②进行判断;

解答 解:把原命题的题设与结论交换得到它的逆命题,所以①正确;
真命题:若a=b,则|a|=|b|,其逆命题为:若|a|=|b|,则a=b,它是假命题,所以②错误;
每个定理一定有逆命题,所以③正确;
正确的有1个,
故选B.

点评 本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题叫定理;两个命题的题设与结论互换的命题互为逆命题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.计算:
(1)$\sqrt{48}+\sqrt{3}$;
(2)$(\sqrt{\frac{4}{3}}+\sqrt{3})×\sqrt{6}$.
(3)$\sqrt{\frac{2}{5}}-\sqrt{\frac{1}{10}}$;
(4)$\sqrt{12}-\sqrt{3}+\sqrt{\frac{1}{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列约分正确的是(  )
A.$\frac{{x}^{6}}{{x}^{2}}$=x3B.$\frac{x-y}{x-y}$=0C.$\frac{x-y}{{x}^{2}-xy}$=$\frac{1}{x}$D.$\frac{2{x}^{2}y}{4x{y}^{2}}$=$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,菱形ABCD的两条对角线AC、BD的长度分别为4和3,则这个菱形的面积是(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知AD=AE,∠B=∠C,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解方程:y-$\frac{y-1}{2}$=2+$\frac{y+2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在△ABC,AB=AC=2,△ABC=30°,点P、Q分别在边AB、AC上,将△APQ沿PQ翻折,点A落到点A′处,则线段BA′长度的最小值是2$\sqrt{3}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果$\frac{AD}{BC}=\frac{1}{4}$,那么$\frac{AF}{BF}$的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接AD,BD,CD,其中CD交直线AP于点E.设∠PAB=α,∠ACE=β,∠AEC=γ.
(1)依题意补全图1;
(2)若α=15°,直接写出β和γ的度数;
(3)如图2,若60°<α<120°,
①判断α,β的数量关系并加以证明;
②请写出求γ大小的思路.(可以不写出计算结果)

查看答案和解析>>

同步练习册答案