精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,点0是坐标原点,四边形ABCD为菱形,AB边在x轴上,点D在y轴上,点A的坐标是(-6,0),AB=10.
(1)求点C的坐标:
(2)连接BD,点P是线段CD上一动点(点P不与C、D两点重合),过点P作PE∥BC交BD于点E,过点B作BQ⊥PE交PE的延长线于点Q.设PC的长为x,PQ的长为y,求y与x之间的函数关系式(直接写出自变量x的取值范围);
(3)在(2)的条件下,连接AQ、AE,当x为何值时,S△BQE+S△AQE=
45
S△DEP?并判断此时以点P为圆心,以5为半径的⊙P与直线BC的位置关系,请说明理由.
精英家教网
分析:(1)过点C作CN⊥x轴,垂足为N,求得CN、ON的长,即可得出坐标;
(2)过点P作PH⊥BC,垂足为H,易证△PHC∽△DOA,可得CH=
3
5
x,BH=10-
3
5
x;然后证明四边形PQBH为矩形,则PQ=BH,即可求得;
(3)过点P作PH′⊥BC,垂足为H′,过点D作DG⊥PQ于点G,过点A作AF⊥PQ交PQ的延长线于点F,用x分别表示出EQ、BQ、AF的值和PE、DG的值,然后,根据S△BOE+S△AQE=
4
5
S△DEP,可求出x的值,最后根据PH′的值与x的值比较,即可得出其位置关系;
解答:精英家教网解:(1)如图1,过点C作CN⊥x轴,垂足为N,则四边形DONC为矩形,
∴ON=CD
∵四边形ABCD是菱形,AB=10,
∴AB=BC=CD=AD=10,
∴ON=10,
∵A(-6,0),
∴OA=6,OD=
AD2-AO2
=
102-62
=8,
∴点C的坐标为(10,8);

(2)如图2,过点P作PH⊥BC,垂足为H,则∠PHC=∠AOD=90°,
∵四边形ABCD是菱形,
∴∠PCB=∠DAO,
∴△PHC∽△DOA,精英家教网
CH
AO
=
PH
DO
=
PC
AD

CH
6
=
PH
8
=
x
10

∴PH=
4
5
x,CH=
3
5
x,
∴BH=10-
3
5
x,
∵PE∥BC,BQ⊥PQ,
∴∠PQB=∠QBC=∠PHB=90°,
∴四边形PQBH为矩形,
∴PQ=BH=10-
3
5
x,
∴y=10-
3
5
x(0<x<10);

(3)如图3,过点P作PH′⊥BC,垂足为H′,则四边形PQBH′是矩形,
∴BQ=PH′=
4
5
x,
∵PE∥BC,
∴∠PED=∠CBD,
∵CD=CB,
∴∠CBD=∠CDB,精英家教网
∴∠CDB=∠PED,
∴PE=PD=10-x,QE=PQ-PE=
2
5
x,
过点D作DG⊥PQ于点G,过点A作AF⊥PQ交PQ的延长线于点F,
∴∠DGF=∠AFG=90°,
∵PQ∥BC,
∴PQ∥AD,
∴∠ADG=90°,
∴四边形AFGD为矩形,
∴AF=DG,
∵PQ∥BC,
∴∠DPG=∠C,
∵∠DGP=∠PH′C=90°,
∴△DGP∽△PH′C,
DP
PC
=
DG
PH′

∴AF=DG=
4
5
(10-x)=8-
4
5
x,
∵S△BQE+S△AQE=
1
2
EQ×BQ+
1
2
EQ×AF,
=
1
2
×
2
5
4
5
x+
1
2
×
2
5
x×(8-
4
5
x)=
8
5
x,
S△DEP=
1
2
PE×DG=
1
2
(10-x)×(8-
4
5
x),
=
2
5
x2-8x+40,
∵S△BQE+S△AQE=
4
5
S△DEP
8
5
x=
4
5
2
5
x2-8x+40),
整理得,x2-25x+100=0,
∴x1=5,x2=20,
∵0<x<10,
∴x2=20不符合题意,舍去,
∴x1=5,
∴x=5时,S△BQE+S△AQE=
4
5
S△DEP
∵PH′=
4
5
x=4<5,
∴⊙P与直线BC相交.
点评:本题考查了菱形、矩形的判定及性质、相似三角形的判定及性质、勾股定理的运用及直线与圆的位置关系,本题考查知识较多,属综合性题目,考查了学生对知识的掌握程度及熟练运用所学知识解答题目的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案