分析 (1)首先根据题意,设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,然后根据“空列”项目总共需要60.8亿元,以及每千米水上建设费用比陆地建设费用多0.2亿元,列出二元一次方程组,再解方程组,求出每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元即可.
(2)首先根据题意,设每天租m辆大车,则需要租10-m辆小车,然后根据每天至少需要运送沙石1600m3,以及每天租车的总费用不超过9300元,列出一元一次不等式组,判断出施工方有几种租车方案;最后分别求出每种租车方案的费用是多少,判断出哪种租车方案费用最低,最低费用是多少即可.
解答 解:(1)设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,
则$\left\{\begin{array}{l}{24x+(40-24)y=60.8}\\{x-y=0.2}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1.6}\\{y=1.4}\end{array}\right.$.
所以每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
答:每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
(2)设每天租m辆大车,则需要租10-m辆小车,
则$\left\{\begin{array}{l}{200m+120(10-m)≥1600}\\{1000m+700(10-m)≤9300}\end{array}\right.$
∴$5≤m≤\frac{23}{3}$,
∴施工方有3种租车方案:
①租5辆大车和5辆小车;
②租6辆大车和4辆小车;
③租7辆大车和3辆小车;
①租5辆大车和5辆小车时,
租车费用为:
1000×5+700×5
=5000+3500
=8500(元)
②租6辆大车和4辆小车时,
租车费用为:
1000×6+700×4
=6000+2800
=8800(元)
③租7辆大车和3辆小车时,
租车费用为:
1000×7+700×3
=7000+2100
=9100(元)
∵8500<8800<9100,
∴租5辆大车和5辆小车时,租车费用最低,最低费用是8500元.
点评 (1)此题主要考查了一元一次不等式组的应用,要熟练掌握,解答此题的关键是要明确:一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:①分析题意,找出不等关系;②设未知数,列出不等式组;③解不等式组;④从不等式组解集中找出符合题意的答案;⑤作答.
(2)此题还考查了二元一次方程组的应用,要熟练掌握,解答此题的关键是要明确列二元一次方程组解决实际问题的一般步骤:①审题:找出问题中的已知条件和未知量及它们之间的关系.②设元:找出题中的两个关键的未知量,并用字母表示出来.③列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.④求解.⑤检验作答:检验所求解是否符合实际意义,并作答.
科目:初中数学 来源: 题型:选择题
A. | 30厘米 | B. | 70厘米 | C. | 100厘米 | D. | 110厘米 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{3}$-2 | B. | 2-$\sqrt{3}$ | C. | $\sqrt{3}$-1 | D. | 1-$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 35° | B. | 45° | C. | 50° | D. | 55° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com