精英家教网 > 初中数学 > 题目详情
如图,Rt△OAB的顶点A(-2,4)在抛物线上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为
A.B.C.D.
C

试题分析:∵Rt△OAB的顶点A(﹣2,4)在抛物线上,∴,解得:a=1
∴抛物线解析式为y=x2
∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2。
∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴。
∴点D和点P的纵坐标均为2。∴令y=2,得2=x2,解得:
∵点P在第一象限,∴点P的坐标为:(,2)。故选C。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在关于x,y的二元一次方程组中.
(1)若a=3.求方程组的解;
(2)若S=a(3x+y),当a为何值时,S有最值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线交于点A 、B,与y轴交于点C.

(1)求点A、B的坐标;
(2)若点P是直线x=1上一点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).

(1)求抛物线l的解析式(用含m的式子表示);
(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;
(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若抛物线与y轴的交点为(0,﹣3),则下列说法不正确的是【   】
A.抛物线开口向上
B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为﹣4
D.抛物线与x轴的交点为(-1,0),(3,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)

(1)求该抛物线的解析式;
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值;
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。

(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数,则此二次函数(   )
A.有最大值1B.有最小值1C.有最大值-3D.有最小值-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线向下平移1个单位,得到的抛物线是(    ).
A.B.C.D.

查看答案和解析>>

同步练习册答案