精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知△ABC是等边三角形,点DE分别在边BCAC上,且CDAEADBE相交于点F

1)求证:∠ABE=∠CAD

2)如图2,以AD为边向左作等边△ADG,连接BG

ⅰ)试判断四边形AGBE的形状,并说明理由;

ⅱ)若设BD1DCk0k1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).

【答案】(1)详见解析;(2)ⅰ)四边形AGBE是平行四边形,证明详见解析;ⅱ).

【解析】

1)只要证明BAE≌△ACD
2)ⅰ)四边形AGBE是平行四边形,只要证明BG=AEBGAE即可;
ⅱ)求出四边形BGAE的周长,ABC的周长即可;

1)证明:如图1中,

∵△ABC是等边三角形,

ABAC,∠BAE=∠C60°

AECD

∴△BAE≌△ACD

∴∠ABE=∠CAD

2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.

理由:∵△ADGABC都是等边三角形,

AGADABAC

∴∠GAD=∠BAC60°

∴△GAB≌△DAC

BGCD,∠ABG=∠C

CDAE,∠C=∠BAE

BGAE,∠ABG=∠BAE

BGAE

∴四边形AGBE是平行四边形,

ⅱ)如图2中,作AHBCH

BHCH

∴四边形BGAE的周长=,ABC的周长=3k+1),

∴四边形AGBEABC的周长比=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.

(1)如图1,当点P与点Q重合时,AE与BF的位置关系是   ,QE与QF的数量关系式   

(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;

(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DE分别是ABAC的中点,BE2DE,延长DE到点F,使得EFBE,连接CF

1)求证:四边形BCFE是菱形;

2)若CE2,∠BCF120°,求菱形BCFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;

(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大家知道,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=.根据

以上信息,回答下列问题:

(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 .

(2)点A、B在数轴上分别表示实数x.

①用代数式表示A、B两点之间的距;

②如果,求x的值.

(3)直接写出代数式的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题发现】

(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为__________;

【拓展探究】

(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;

【解决问题】

(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个二次函数的图象经过A(0,﹣6)、B(4,﹣6)、C(6,0)三点.

(1)求这个二次函数的解析式;

(2)分别联结AC、BC,求tanACB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图22,将—矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是边AB上的—个动点(不与点A、N重合),过点E的反比例函数的图象与边BC交于点F。

1若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求的值:

2若OA=2.0C=4.问当点E运动到什么位置时,四边形OAEF的面积最大.其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

116x 40 9 x 16

2 3 3x 7 2x 7

3 y 4 3 y 4

4 3

查看答案和解析>>

同步练习册答案