ÔĶÁÏÂÃæµÄ²ÄÁÏ
Àý1£ºÒÑÖªº¯Êýy=3x-1
½â£ºÓÉy=3x-1£¬¿ÉµÃx=
y+1
3
£¬ËùÒÔÔ­º¯Êýy=3x-1µÄ·´º¯ÊýÊÇy=
x+1
3

Àý2£ºÒÑÖªº¯Êýy=
x+3
x-1
£¨x¡Ù1£©
½â£ºÓÉy=
2x+3
x-1
£¬¿ÉµÃx=
y+3
y-2
£¬ËùÒÔÔ­º¯Êýy=
2x+3
x-1
µÄ·´º¯ÊýÊÇy=
x+3
x-2
£¨x¡Ù2£©
ÔÚÒÔÉÏÁ½ÀýÖУ¬ÔÚÏàÓ¦µÄÌõ¼þÏ£¬Ò»¸öÔ­º¯ÊýÓз´º¯Êýʱ£¬Ô­º¯ÊýÖÐ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýÖÐyµÄº¯Êýֵȡֵ·¶Î§£¬Ô­º¯ÊýÖк¯ÊýÖµyµÄÈ¡Öµ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýµÄ×Ô±äÁ¿xÈ¡Öµ·¶Î§£¬Í¨¹ýÒÔÉÏÄÚÈÝÍê³ÉÏÂÃæÈÎÎñ£º
£¨1£©Çóº¯Êýy=-2x+3µÄ·´º¯Êý£®
£¨2£©º¯Êýy=
x-2
x+1
µÄ·´º¯ÊýµÄº¯ÊýÖµµÄÈ¡Öµ·¶Î§Îª
B
B

A£®y¡Ù1  B£®y¡Ù-1  C£®y¡Ù-2  D£®y¡Ù2£®
£¨3£©ÏÂÁк¯ÊýÖз´º¯ÊýÊÇËü±¾ÉíµÄÊÇ
¢Ù¢Ü¢Ý
¢Ù¢Ü¢Ý
£¨ÌîÐòºÅ¼´¿É£©
 ¢Ùy=x ¢Úy=x+1 ¢Ûy=-x+1 ¢Üy=
1
x
 ¢Ýy=
x+1
x-1
(x¡Ù1)
£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒ⣬ÏÈÓÃy±íʾ³öx£¬È»ºó¼´¿ÉµÃµ½·´º¯Êý£»
£¨2£©¸ù¾ÝÌâÄ¿ÐÅÏ¢£¬Çó³öÔ­º¯ÊýµÄ×Ô±äÁ¿µÄÈ¡Öµ·¶Î§¼´Îª·´º¯ÊýµÄº¯ÊýÖµµÄ·¶Î§£»
£¨3£©¸ù¾Ý·´º¯ÊýµÄ¶¨Òå·Ö±ðÇó³ö¸÷СÌâµÄ·´º¯Êý£¬¼´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©ÓÉy=-2x+3µÃ£¬x=
3-y
2
£¬
ËùÒÔ£¬º¯Êýy=-2x+3µÄ·´º¯ÊýÊÇy=
3-x
2
£»

£¨2£©Çóº¯Êýy=
x-2
x+1
µÄ×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£¬
x+1¡Ù0£¬
½âµÃx¡Ù-1£¬
ËùÒÔ£¬º¯Êýy=
x-2
x+1
µÄ·´º¯ÊýµÄº¯ÊýÖµµÄÈ¡Öµ·¶Î§Îªy¡Ù-1£»

£¨3£©¢Ùy=xµÄ·´º¯ÊýΪy=x£»
¢Úy=x+1µÄ·´º¯ÊýΪy=x-1£»
¢Ûy=-x+1µÄ·´º¯ÊýΪy=1-x£»
¢Üy=
1
x
µÄ·´º¯ÊýΪy=
1
x
£»
¢Ýy=
x+1
x-1
£¨x¡Ù1£©µÄ·´º¯ÊýΪy=
x+1
x-1
£»
ËùÒÔ£¬·´º¯ÊýÊÇËü±¾ÉíµÄÓТ٢ܢݣ®
¹Ê´ð°¸Îª£º£¨2£©B£¬£¨3£©¢Ù¢Ü¢Ý£®
µãÆÀ£º±¾Ì⿼²éÁ˺¯Êý¹Øϵʽ£¬º¯Êý×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬Àí½â·´º¯ÊýµÄ¶¨ÒåÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨2012•ÔÇÏØÈýÄ££©ÔĶÁÏÂÃæµÄ²ÄÁÏ£º
°ÑÒ»¸ö·Öʽд³ÉÁ½¸ö·ÖʽµÄºÍ½Ð×ö°ÑÕâ¸ö·Öʽ±íʾ³É¡°²¿·Ö·Öʽ¡±
[Àý]½«·Öʽ
1-3x
x2-1
±íʾ³É²¿·Ö·Öʽ£®
½â£º
1-3x
x2-1
=
M
x+1
+
N
x-1
£¬
½«µÈʽÓÒ±ßͨ·Ö£¬µÃ£º
M(x-1)+N(x+1)
(x+1)(x-1)
=
(M+N)x+N-M
x2-1
£¬
ÒÀ¾ÝÌâÒâµÃ£¬
M+N=-3
N-M=1
½âµÃ
M=-2
N=-1

¡à
1-3x
x2-1
=
-2
x+1
+
-1
x-1

ÇëÄãÔËÓÃÉÏÃæËùѧµ½µÄ·½·¨£¬½â¾öÏÂÃæµÄÎÊÌ⣺
½«·Öʽ
5x-4
(x-1)(2x-1)
±íʾ³É²¿·Ö·Öʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæµÄ²ÄÁÏ
Àý1£ºÒÑÖªº¯Êýy=3x-1
½â£ºÓÉy=3x-1£¬¿ÉµÃÊýѧ¹«Ê½£¬ËùÒÔÔ­º¯Êýy=3x-1µÄ·´º¯ÊýÊÇÊýѧ¹«Ê½
Àý2£ºÒÑÖªº¯ÊýÊýѧ¹«Ê½£¨x¡Ù1£©
½â£ºÓÉÊýѧ¹«Ê½£¬¿ÉµÃÊýѧ¹«Ê½£¬ËùÒÔÔ­º¯ÊýÊýѧ¹«Ê½µÄ·´º¯ÊýÊÇÊýѧ¹«Ê½£¨x¡Ù2£©
ÔÚÒÔÉÏÁ½ÀýÖУ¬ÔÚÏàÓ¦µÄÌõ¼þÏ£¬Ò»¸öÔ­º¯ÊýÓз´º¯Êýʱ£¬Ô­º¯ÊýÖÐ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýÖÐyµÄº¯Êýֵȡֵ·¶Î§£¬Ô­º¯ÊýÖк¯ÊýÖµyµÄÈ¡Öµ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýµÄ×Ô±äÁ¿xÈ¡Öµ·¶Î§£¬Í¨¹ýÒÔÉÏÄÚÈÝÍê³ÉÏÂÃæÈÎÎñ£º
£¨1£©Çóº¯Êýy=-2x+3µÄ·´º¯Êý£®
£¨2£©º¯ÊýÊýѧ¹«Ê½µÄ·´º¯ÊýµÄº¯ÊýÖµµÄÈ¡Öµ·¶Î§Îª______
A£®y¡Ù1 B£®y¡Ù-1 C£®y¡Ù-2 D£®y¡Ù2£®
£¨3£©ÏÂÁк¯ÊýÖз´º¯ÊýÊÇËü±¾ÉíµÄÊÇ______£¨ÌîÐòºÅ¼´¿É£©
¢Ùy=x ¢Úy=x+1 ¢Ûy=-x+1 ¢ÜÊýѧ¹«Ê½ ¢ÝÊýѧ¹«Ê½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012Äê5ÔÂÖп¼ÊýѧģÄâÊÔ¾í£¨58£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæµÄ²ÄÁÏ
Àý1£ºÒÑÖªº¯Êýy=3x-1
½â£ºÓÉy=3x-1£¬¿ÉµÃ£¬ËùÒÔÔ­º¯Êýy=3x-1µÄ·´º¯ÊýÊÇ
Àý2£ºÒÑÖªº¯Êý£¨x¡Ù1£©
½â£ºÓÉ£¬¿ÉµÃ£¬ËùÒÔÔ­º¯ÊýµÄ·´º¯ÊýÊÇ£¨x¡Ù2£©
ÔÚÒÔÉÏÁ½ÀýÖУ¬ÔÚÏàÓ¦µÄÌõ¼þÏ£¬Ò»¸öÔ­º¯ÊýÓз´º¯Êýʱ£¬Ô­º¯ÊýÖÐ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýÖÐyµÄº¯Êýֵȡֵ·¶Î§£¬Ô­º¯ÊýÖк¯ÊýÖµyµÄÈ¡Öµ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýµÄ×Ô±äÁ¿xÈ¡Öµ·¶Î§£¬Í¨¹ýÒÔÉÏÄÚÈÝÍê³ÉÏÂÃæÈÎÎñ£º
£¨1£©Çóº¯Êýy=-2x+3µÄ·´º¯Êý£®
£¨2£©º¯ÊýµÄ·´º¯ÊýµÄº¯ÊýÖµµÄÈ¡Öµ·¶Î§Îª______
A£®y¡Ù1  B£®y¡Ù-1  C£®y¡Ù-2  D£®y¡Ù2£®
£¨3£©ÏÂÁк¯ÊýÖз´º¯ÊýÊÇËü±¾ÉíµÄÊÇ______£¨ÌîÐòºÅ¼´¿É£©
 ¢Ùy=x ¢Úy=x+1 ¢Ûy=-x+1 ¢Ü ¢Ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012Äêºþ±±Ê¡Ê®ÑßÊÐÔÇÏØÖп¼ÊýѧÈýÄ£ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæµÄ²ÄÁÏ£º
°ÑÒ»¸ö·Öʽд³ÉÁ½¸ö·ÖʽµÄºÍ½Ð×ö°ÑÕâ¸ö·Öʽ±íʾ³É¡°²¿·Ö·Öʽ¡±
[Àý]½«·Öʽ±íʾ³É²¿·Ö·Öʽ£®
½â£º£¬
½«µÈʽÓÒ±ßͨ·Ö£¬µÃ£º=£¬
ÒÀ¾ÝÌâÒâµÃ£¬½âµÃ
¡à+
ÇëÄãÔËÓÃÉÏÃæËùѧµ½µÄ·½·¨£¬½â¾öÏÂÃæµÄÎÊÌ⣺
½«·Öʽ±íʾ³É²¿·Ö·Öʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸