6£®°ÑÏÂÁдúÊýʽ·Ö±ðÌîÔÚÏàÓ¦µÄÀ¨ºÅÄÚ
2-ab£¬-3a2+$\frac{1}{2}$£¬-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£¬$\frac{b}{a}$£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$£®
¢Ùµ¥Ïîʽ£º{                  }£®
¢Ú¶àÏîʽ£º{                  }£®
¢Û¶þ´Î¶þÏîʽ£º{              }£®
¢ÜÕûʽ£º{                   }£®

·ÖÎö ¸ù¾Ýµ¥ÏîʽÊÇÊýÓë×ÖĸµÄ»ý£¬¶àÏîʽÊǼ¸¸öµ¥ÏîËƵĺͣ¬¶àÏîʽÖеÄÿ¸öµ¥ÏîʽÊǶàÏîʽµÄÏµ¥ÏîʽÓë¶àÏîʽͳ³ÆÕûʽ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º¢Ùµ¥Ïîʽ£º{-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a}£»
¢Ú¶àÏîʽ£º{2-ab£¬-3a2+$\frac{1}{2}$£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$}
¢Û¶þ´Î¶þÏîʽ£º{2-ab£¬-3a2+$\frac{1}{2}$£¬$\frac{{a}^{2}+{b}^{2}}{4}$}£»
¢ÜÕûʽ£º{2-ab£¬-3a2+$\frac{1}{2}$£¬-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$}£»
¹Ê´ð°¸Îª£º-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£»2-ab£¬-3a2+$\frac{1}{2}$£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$£»2-ab£¬-3a2+$\frac{1}{2}$£¬$\frac{{a}^{2}+{b}^{2}}{4}$£»2-ab£¬-3a2+$\frac{1}{2}$£¬-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÕûʽ£¬µ¥ÏîʽÊÇÊýÓë×ÖĸµÄ»ý£¬¶àÏîʽÊǼ¸¸öµ¥ÏîËƵĺͣ¬¶àÏîʽÖеÄÿ¸öµ¥ÏîʽÊǶàÏîʽµÄÏµ¥ÏîʽÓë¶àÏîʽͳ³ÆÕûʽ£¬×¢Òâ·ÖĸÖк¬ÓÐ×ÖĸµÄʽ×ÓÊÇ·Öʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÓÐÏÂÁи÷ÓÐÀíÊý£º-22£¬-|-2.5|£¬3$\frac{1}{2}$£¬0£¬£¨-1£©100£¬-|3|
£¨1£©½«ÉÏÃæ¸÷ÊýÌîÈëÊʵ±µÄÀ¨ºÅÄÚ£º
·ÖÊý¼¯ºÏ£º{                          ¡­}£»
·ÇÕýÕûÊý¼¯ºÏ£º{                      ¡­}£»
£¨2£©½«ÉÏÃæ¸÷ÊýÔÚÊýÖáÉϱíʾ³öÀ´£¬²¢°´´ÓСµ½´óµÄ˳ÐòÓá°£¼¡±Á¬½ÓÆðÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈôA=7k2-10k+2015£¬B=7k2-10k+2016£¬Çë±È½ÏAÓëBµÄ´óС¹Øϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐÃüÌâ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®Æ½·Ö»¡µÄÖ±¾¶Æ½·ÖÕâÌõ»¡Ëù¶ÔµÄÏÒB£®Æ½·ÖÏÒµÄÖ±¾¶Æ½·ÖÕâÌõÏÒËù¶ÔµÄ»¡
C£®´¹Ö±ÓÚÏÒµÄÖ±¾¶Æ½·ÖÕâÌõÏÒD£®ÏÒµÄÖд¹Ïß¾­¹ýÔ²ÐÄ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª¶àÏîʽ-$\frac{1}{4}$x2ym+1+2xy2-4x3+3ÊÇÁù´ÎËÄÏîʽ£¬µ¥Ïîʽ$\frac{2}{5}$x3ny5-mµÄ´ÎÊýÓëÕâ¸ö¶àÏîʽµÄ´ÎÊýÏàͬ£¬ÇómnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÈôÅ×ÎïÏßy=x2+bx+cÓëxÖáÖ»ÓÐÒ»¸ö½»µã£¬ÇÒ¹ýµãA£¨m£¬n£©£¬B£¨m+6£¬n£©£®
£¨1£©Ð´³öbÓëcÖ®¼äµÄÊýÁ¿¹Øϵ£»
£¨2£©ÇónµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª-axmynÊǹØÓÚx£¬yµÄµ¥Ïîʽ£¬ËüµÄϵÊýÊÇ3£¬´ÎÊýÊÇ5£¬Çó´úÊýʽa2+£¨m+n£©2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª$\frac{b-2}{a+1}$=4£¬Çó$\frac{3£¨b-2£©}{4£¨a+1£©}$+$\frac{3£¨a+1£©}{b-2}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®°ÑÏÂÁи÷ÊýÌîÈëËüËùÊôµÄ¼¯ºÏÄÚ
-0.56£¬+11£¬$\frac{3}{5}$£¬-125£¬+2.5£¬$-\frac{1}{11}£¬\frac{1}{12}£¬-\frac{1}{13}$£¬0
ÕûÊý¼¯ºÏ{                      }
¸ºÓÐÀíÊý¼¯ºÏ{                     }£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸