8£®ÒÑÖªyÊǹØÓÚxµÄº¯Êý£¬ÈôÆäͼÏó¾­¹ýµãP£¨t£¬2t£©£¬Ôò³ÆµãPΪº¯ÊýͼÏóÉϵġ°Æ«Àëµã¡±£®ÀýÈ磺ֱÏßy=x-3ÉÏ´æÔÚ¡°Æ«Àëµã¡±P£¨-3£¬-6£©£®
£¨1£©ÔÚË«ÇúÏßy=$\frac{1}{x}$ÉÏÊÇ·ñ´æÔÚ¡°Æ«Àëµã¡±£¿Èô´æÔÚ£¬ÇëÇó³ö¡°Æ«Àëµã¡±µÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©ÈôÅ×ÎïÏßy=-$\frac{1}{2}$x2+£¨$\frac{2}{3}$a+2£©x-$\frac{2}{9}$a2-a+1ÉÏÓС°Æ«Àëµã¡±£®ÇÒ¡°Æ«Àëµã¡±ÎªA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬Çów=x12+x22-$\frac{ka}{3}$µÄ×îСֵ£¨Óú¬kµÄʽ×Ó±íʾ£©£»
£¨3£©Èôº¯Êýy=$\frac{1}{4}$x2+£¨m-t+2£©x+n+t-2µÄͼÏóÉÏ´æÔÚΨһµÄÒ»¸ö¡°Æ«Àëµã¡±£®ÇÒµ±-2¡Üm¡Ü3ʱ£¬nµÄ×îСֵΪt£¬ÇótµÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ý¡°Æ«Àëµã¡±µÄ×ø±êÌØÕ÷Éè³ö×ø±ê£¬´úÈëË«ÇúÏßÖУ¬ÓнâÔòÓС°Æ«Àëµã¡±£»
£¨2£©ÉèÅ×ÎïÏß¡°Æ«Àëµã¡±µÄ×ø±êΪP£¨x£¬2x£©£¬´úÈëÅ×ÎïÏߵĹØϵʽÖеõ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÒòΪÓÐÁ½¸öÆ«Àëµã£¬ÔòÕâÁ½¸öÆ«ÀëµãµÄºá×ø±ê¾ÍÊÇÕâ¸öÒ»Ôª¶þ´Î·½³ÌµÄÁ½¸ö¸ù£¬ÏÈÓÉ¡÷µÄֵȷ¶¨aµÄÈ¡Öµ£¬ÔÙÓɸùÓëϵÊýµÄ¹ØϵµÃ£ºÁ½¸ùºÍÓëÁ½¸ù¾Ý»ýµÄʽ×Ó£¬ÔÙ½«ËùÇóʽ×Ó´úÈëw=x12+x22-$\frac{ka}{3}$½øÐбäÐΣ¬µÃµ½w¹ØÓÚaµÄ¶þ´Îº¯Êý£¬Çó×îСֵ¼´¿É£»
£¨3£©É躯Êý¡°Æ«Àëµã¡±µÄ×ø±êΪP£¨x£¬2x£©£¬´úÈ뺯ÊýµÄ¹ØϵʽÖеõ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÒòΪÓÐ-¸öÆ«Àëµã£¬Ôò¡÷=0£¬µÃµ½n=£¨m-t£©2-t+2£¬°ÑËü¿´³ÉÒ»¸ö¶þ´Îº¯Êý£¬¶Ô³ÆÖám=t£¬·ÖÈýÖÖÇé¿öÌÖÂÛ£º¢Ùt£¼-2£¬Áз½³Ì£¬·½³ÌÎ޽⣬ûÓзûºÏÌõ¼þµÄtÖµ£»¢Út£¾3£¬Áз½³Ì£¬½â³öt²¢È¡É᣻¢Ûµ±-2¡Üt¡Ü3£¬Í¬ÀíµÃt=1£®

½â´ð ½â£º£¨1£©Éè´æÔÚÕâÑùµÄ¡°Æ«Àëµã¡±P£¬×ø±êΪ£¨t£¬2t£©£¬
½«µãPµÄ×ø±ê´úÈëË«ÇúÏßy=$\frac{1}{x}$Öеãº2t=$\frac{1}{t}$£¬2t2=1£¬
½âµÃ£ºt=¡À$\frac{\sqrt{2}}{2}$£¬
¹Ê´æÔÚÁ½¸ö¡°Æ«Àëµã¡±£¬×ø±êΪP£¨$\frac{\sqrt{2}}{2}$£¬$\sqrt{2}$£©ºÍP£¨-$\frac{\sqrt{2}}{2}$£¬-$\sqrt{2}$£©£»
£¨2£©ÉèÅ×ÎïÏß¡°Æ«Àëµã¡±µÄ×ø±êΪP£¨x£¬2x£©£¬
½«µãPµÄ×ø±ê´úÈëÅ×ÎïÏßy=-$\frac{1}{2}$x2+£¨$\frac{2}{3}$a+2£©x-$\frac{2}{9}$a2-a+1Öеãº
2x=-$\frac{1}{2}$x2+£¨$\frac{2}{3}$a+2£©x-$\frac{2}{9}$a2-a+1£¬
-$\frac{1}{2}$x2+$\frac{2}{3}$ax-$\frac{2}{9}$a2-a+1=0£¬
¡ß¡°Æ«Àëµã¡±ÎªA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬
¡àx1¡¢x2ÊÇ·½³Ì-$\frac{1}{2}$x2+$\frac{2}{3}$ax-$\frac{2}{9}$a2-a+1=0µÄÁ½¸ö¸ù£¬
Ôòx1+x2=-$\frac{\frac{2}{3}a}{-\frac{1}{2}}$=$\frac{4a}{3}$£¬x1•x2=$\frac{-\frac{2}{9}{a}^{2}-a+1}{-\frac{1}{2}}$=$\frac{4}{9}{a}^{2}+2a-2$£¬
w=x12+x22-$\frac{ka}{3}$=£¨x1+x2£©2-2x1x2-$\frac{ka}{3}$=£¨$\frac{4a}{3}$£©2-2£¨$\frac{4}{9}{a}^{2}+2a-2$£©-$\frac{ka}{3}$£¬
w=$\frac{8}{9}{a}^{2}$-£¨4+$\frac{k}{3}$£©a+4£¬
¡ß$\frac{8}{9}$£¾0£¬
¡àwÓÐ×îСֵ£¬
ÔòwС=$\frac{4¡Á\frac{8}{9}¡Á4-£¨4+\frac{k}{3}£©^{2}}{4¡Á\frac{8}{9}}$=-$\frac{1}{32}{k}^{2}$-$\frac{3}{4}k$-$\frac{1}{2}$£»
£¨3£©É躯Êý¡°Æ«Àëµã¡±µÄ×ø±êΪP£¨x£¬2x£©£¬
½«µãPµÄ×ø±ê´úÈ뺯Êýy=$\frac{1}{4}$x2+£¨m-t+2£©x+n+t-2µÃ£º
2x=$\frac{1}{4}$x2+£¨m-t+2£©x+n+t-2£¬
$\frac{1}{4}$x2+£¨m-t£©x+n+t-2=0£¬
¡ß´æÔÚΨһµÄÒ»¸ö¡°Æ«Àëµã¡±£¬
¡à¡÷=£¨m-t£©2-4¡Á$\frac{1}{4}$¡Á£¨n+t-2£©=0£¬
n=£¨m-t£©2-t+2£¬
ÕâÊÇÒ»¸ön¹ØÓÚmµÄ¶þ´Îº¯Êý£¬Í¼ÏóΪÅ×ÎïÏߣ¬¿ª¿ÚÏòÉÏ£¬¶Ô³ÆÖáΪm=t£¬¶Ô³ÆÖá×ó²à£¬nËæmµÄÔö´ó¶ø¼õС£»¶Ô³ÆÖáÓҲ࣬nËæmµÄÔö´ó¶øÔö´ó£»
¢Ùt£¼-2£¬µ±-2¡Üm¡Ü3ʱ£¬ÔÚ¶Ô³ÆÖáÓÒ²àµÝÔö£¬
¡àµ±m=-2ʱ£¬nÓÐ×îСֵΪt£¬
¼´£¨-2-t£©2-t+2=t£¬
t2+2t+6=0£¬
¡÷=4-4¡Á1¡Á6£¼0£¬·½³ÌÎ޽⣬
¢Út£¾3£¬µ±-2¡Üm¡Ü3ʱ£¬ÔÚ¶Ô³ÆÖá×ó²àµÝ¼õ£¬
¡àµ±m=3ʱ£¬nÓÐ×îСֵΪt£¬
¼´£¨3-t£©2-t+2=t£¬
½âµÃ£ºt1=4+$\sqrt{5}$£¬t2=4-$\sqrt{5}$£¼3£¨Éᣩ£¬
¢Ûµ±-2¡Üt¡Ü3£¬µ±-2¡Üm¡Ü3ʱ£¬nÓÐ×îСֵΪ-t+2£¬
¡à-t+2=t£¬
t=1£¬
×ÛÉÏËùÒÔÊö£ºtµÄֵΪ4+$\sqrt{5}$»ò1£®

µãÆÀ ±¾ÌâÊÇÒ»¸öÔĶÁÀí½âÎÊÌ⣬¿¼²éÁ˶Ժ¯Êý¡°Æ«Àëµã¡±µÄÕÆÎÕºÍÔËÓ㬻¹¿¼²éÁË·´±ÈÀýº¯ÊýºÍ¶þ´Îº¯ÊýµÄÐÔÖʼ°Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓë¶þ´Îº¯ÊýµÄ¹Øϵ£»Ã÷È·Ò»Ôª¶þ´Î·½³Ì¸ù¾ÝÓëϵÊýµÄ¹Øϵ£¬·½³ÌµÄ½âÓë¸ùµÄÅбðʽµÄ¹Øϵ£»ÓÈÆäÊǶþ´Îº¯ÊýµÄ×îÖµÎÊÌ⣬ÔÚ×Ô±äÁ¿µÄËùÓÐÈ¡ÖµÖУºµ±a£¾0ʱ£¬Å×ÎïÏßÔÚ¶Ô³ÆÖá×ó²à£¬yËæxµÄÔö´ó¶ø¼õÉÙ£»ÔÚ¶Ô³ÆÖáÓҲ࣬yËæxµÄÔö´ó¶øÔö´ó£¬º¯ÊýÓÐ×îСֵ£¬µ±a£¼0ʱ£¬Å×ÎïÏßÔÚ¶Ô³ÆÖá×ó²à£¬yËæxµÄÔö´ó¶øÔö´ó£»ÔÚ¶Ô³ÆÖáÓҲ࣬yËæxµÄÔö´ó¶ø¼õÉÙ£¬º¯ÊýÓÐ×î´óÖµ£»Èç¹ûÔڹ涨µÄÈ¡ÖµÖУ¬Òª¿´Í¼ÏóºÍÔö¼õÐÔÀ´Åжϣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬Ö±Ïßa£¬bÏཻ£¬¡Ï2=3¡Ï1£¬Ôò¡Ï3=45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÓÐÒ»¸öÁ½Î»ÊýµÈÓÚÆä¸÷λÊý×ÖÖ®»ýµÄ3±¶£¬ÆäʮλÊý×ֱȸöλÊý×ÖС2£¬ÇóÕâ¸öÁ½Î»Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãA£¨0£¬4£©£¬µãB£¨-3£¬0£©£¬¶¯µãP´ÓB³ö·¢ÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÑØxÖáÕý·½ÏòÒƶ¯£¬Í¬Ê±¶¯µãE´ÓO³ö·¢ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØxÖḺ·½ÏòÒƶ¯£¬µãQÊǵãP¹ØÓÚµãEµÄ¶Ô³Æµã£¬ÉèµãPÔ˶¯Ê±¼äÊÇtÃ룮
£¨1£©µ±PµãÔÚxÖáÕý°ëÖáÉÏÔ˶¯Ê±£¬OP=2t-3£¬OQ=4t-3£»£¨Óú¬tµÄ´úÊýʽ±íʾ£©
£¨2£©Á¬½áAP£¬AQ£¬ÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹¡÷PAQÊÇÖ±½ÇÈý½ÇÐΣ¬Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©µ±PµãÔÚxÖáÕý°ëÖáÉÏÔ˶¯Ê±£¬Á¬½áAP£¬µãCÊÇÏ߶ÎAPÉϵÄÒ»µã£¬ÇÒAC=$\frac{1}{4}$AP£¬Á¬½áOC£¬½«¡÷OACÑØOCËùÔÚµÄÖ±ÏßÕÛµþµÃµ½¡÷OCD£¬µ±¡÷OCDÓë¡÷OCPÖصþ²¿·ÖµÄÃæ»ýÊÇ¡÷OCPÃæ»ýµÄ$\frac{1}{3}$ʱ£¬tµÄÈ¡Öµ·¶Î§ÊÇt¡Ý$\frac{4\sqrt{3}+3}{2}$£®£¨Ö±½Óд³ö´ð°¸¼´¿É£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ1£¬µãP¡¢QÊǾØÐÎABCDµÄ¶Ô½ÇÏßBDÉϲ»ÖغϵÄÁ½µã£¬ÇÒBP=DQ£¬µãP¹ØÓÚÖ±ÏßAD¡¢ABµÄ¶Ô³Æµã·Ö±ðÊǵãE¡¢F£¬µãQ¹ØÓÚÖ±ÏßBC¡¢CDµÄ¶Ô³Æµã·Ö±ðÊǵãG¡¢H£®
£¨1£©ÇóÖ¤£º¡÷BFP¡Õ¡÷DHQ
£¨2£©ÒÔÏÂ˵·¨ÕýÈ·µÄÓТ٢ڢۢܣ®
¢ÙµãE¡¢D¡¢HÈýµã¹²Ïߣ»¢ÚEH¡ÎFG£»¢ÛÈôAP¡ÍBD£¬ÔòËıßÐÎEFGHÊǾØÐΣ»¢ÜÈôËıßÐÎEFGHÊÇÁâÐΣ¬ÔòBD=2AP£»¢ÝËıßÐÎEFGH²»¿ÉÄÜÊÇÕý·½ÐΣ®
£¨3£©Èçͼ2£¬ÒÔµãE¡¢F¡¢G¡¢HΪ¶¥µãµÄËıßÐÎÇ¡ºÃΪÁâÐΣ¬ÇÒAB=8£¬AD=6£¬ÇóPQµÄ³¤£®£¨Ö±½Óд³ö´ð°¸£¬²»±Ø˵Ã÷ÀíÓÉ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬¹¤ÈËʦ¸µÔÚ°²×°Ä¾ÖÊÃÅ¿òʱ£¬Îª·ÀÖ¹±äÐγ£³£ÏñͼÖÐËùʾ£¬¶¤ÉÏÁ½ÌõбÀ­µÄľÌõ£¬ÕâÑù×öµÄÔ­ÀíÊÇ£ºÈý½ÇÐξßÓÐÎȶ¨ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èôa2=9£¬Ôòa3=¡À27£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®$\sqrt{4}$-£¨-2£©2=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¼ÆË㣺${£¨-\frac{1}{3}{x^2}y£©^3}$=-$\frac{1}{27}$x6y3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸