精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),点P是抛物线上一动点,连接BP,OP.

(1)求这条抛物线的解析式;
(2)若△BOP是以BO为底边的等腰三角形,求点P的坐标.

【答案】
(1)解:将点A(2,0),B(0,2)代入y=﹣x2+bx+c,

得:

解得:

∴这条抛物线的解析式为y=﹣x2+x+2


(2)解:∵△BOP是以BO为底边的等腰三角形,且OB=2,

∴点P的纵坐标为1,

当y=1时,﹣x2+x+2=1,

解得:x1= ,x2=

∴点P的坐标为( ,1)或( ,1)


【解析】(1)待定系数法求解可得;(2)根据△BOP是以BO为底边的等腰三角形知点P的纵坐标为1,即可得﹣x2+x+2=1,解之可得其横坐标.
【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等边三角形ABC中,点EAB上,点DCB的延长线上,且ED=EC,如图,试确定线段AEDB的大小关系,并说明理由”.

(1)当点EAB的中点时,如图1,确定线段AEDB的大小关系,直接写出结论:AE   DB

(填“>”,“<”“=”).

(2)证明你得出的以上(1),如图2,过点EEFBC,交AC于点F.

(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED = EC.若ABC的边长为1,AE = 2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,我们把点叫做点的衍生点.已知点的衍生点为,点的衍生点为,点的衍生点为这样依次得到点若点的坐标为,若点在第四象限,则范围分别为______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,对角线ACBD相交于点O , 且AC=6cm,BD=8cm,动点PQ分别从点BD同时出发,运动速度均为1cm/s,点P沿BCD运动,到点D停止,点Q沿DOB运动,到点O停止1s后继续运动,到点B停止,连接APAQPQ . 设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).

(1)填空:AB=cm,ABCD之间的距离为cm;
(2)当4≤x≤10时,求yx之间的函数解析式;
(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是平行四边形,点A,B,C在⊙O上,P为 上一点,连接AP,CP,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在锐角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABCAC于点D,点M,N分别是BDBC边上的动点,则MN+MC的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是轴对称图形又是中心对称图形的是(
A.
等边三角形
B.
平行四边形
C.
正方形
D.
正五边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,射线CBOA,C=OAB=100°,E、FCB上,且满足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度数;

(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=OBA?若存在,求出其度数;若不存在,说明理由。

查看答案和解析>>

同步练习册答案