【题目】如图,矩形ABCD中,P是边AD上的一点,连接BP,CP过点B作射线交线段CP的延长线于点E,交AD边于点M,且使∠ABE=∠CBP,AB=2,BC=5.
(1)证明:△ABM∽△APB;
(2)当AP=3时,求sin∠EBP的值;
(3)如果△EBC是以BC为底边的等腰三角形,求AP的长.
【答案】(1)见解析;(2)sin∠EBP=;(3)AP的值为4或.
【解析】
(1)根据矩形的性质与相似三角形的判定即可求解;
(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正弦值;
(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有xy=5x,即y=2x5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=ECEP=BCMP=5y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,∠A=∠ABC=∠DCB=∠D=90°,AB=DC,
∴∠APB=∠CBP,
∵∠ABM=∠CBP,
∴∠ABM=∠APB,
∵∠A=∠A.
∴△ABM∽△APB;
(2)解:过点M作MH⊥BP于H,如图所示:
∵△ABM∽△APB,
∴=,即=,
解得:AM=,
∴MP=AP﹣AM=,
∴BM===,BP===,
∵S△BMP=MPAB=BPMH,
<>∴MH===∴sin∠EBP===.
(3)解:设AP=x,PM=y.
由(1)得:△ABM∽△APB,
∴=,即=,
解得:y=x﹣
①若EB=EC,则有∠EBC=∠ECB,
∴∠ABM=∠DCP,
在△AMB和△DPC中,,
∴△AMB≌△DPC(ASA),
∴AM=DP,
∴x﹣y=5﹣x,
∴y=2x﹣5,
∴x﹣=2x﹣5,
解得:x=1,或x=4,
∵2<x≤5,
∴AP=x=4;
②若CE=CB,则∠EBC=∠E,
∵AD∥BC,
∴∠EMP=∠EBC=∠E,
∴PE=PM=y,
∴PC=EC﹣EP=5﹣y,
∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,
∴3x2﹣10x﹣4=0,
解得:x=,或x=(舍去),
∴AP=x=,
终上所述:AP的值为4或.
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )
A.(1,0)
B.(1,0)或(﹣1,0)
C.(2,0)或(0,﹣2)
D.(﹣2,1)或(2,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年(1)班的体育课上,小明、小强和小华三人在学习训练足球,足球从一人传到另一人就记为踢一次.
(1)如果从小强开始踢,经过两次踢球后,足球踢到了小明处的概率是多少?请用数状图或列表法说明.
(2)如果踢三次,球踢到了小明处的可能性最小,应从谁开始踢?(直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点B在x轴的正半轴上,OB=,AB⊥OB,∠AOB=30°.把△ABO绕点O逆时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,且OA,OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A,B两点,则sin∠OAB的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点B在x轴的正半轴上,OB=,AB⊥OB,∠AOB=30°.把△ABO绕点O逆时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.
(1)求证:MF是⊙O的切线;
(2)若CN=3,BN=4,求CM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=-与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.
求:(1)一次函数的解析式;
(2)△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com