分析 根据抛物线与x轴的交点问题,两交点的横坐标即为方程ax2+bx+c=0的解.
解答 解:∵抛物线y=ax2+bx+c与x轴的两个交点分别为(2,0),(-3,0),
即自变量为2和-3时函数值为0,
∴一元二次方程ax2+bx+c=0的根为x1=2,x2=-3.
故答案为:x1=2,x2=-3.
点评 本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -$\frac{{b}^{3}}{2{a}^{3}}$ | B. | -$\frac{{b}^{3}}{6{a}^{3}}$ | C. | -$\frac{{b}^{3}}{8{a}^{3}}$ | D. | $\frac{{b}^{3}}{8{a}^{3}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1>0,y2<0 | B. | y1<0,y2<0 | C. | y1•y2<0 | D. | y1+y2<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com