精英家教网 > 初中数学 > 题目详情
12、如图,正方形ABCD中,E是CD的中点,P是BC上一点,要使△ABP与△ECP相似,还需具备的一个条件是
BP=2CP
分析:由于△ABP与△ECP都是直角三角形,根据如果两个三角形有两组对应边的比相等,并且它们的夹角也相等,则当AB:EC=BP:CP时能得到△ABP与△ECP相似,即可得到BP=2CP.
解答:解:∵△ABP与△ECP都是直角三角形,
∴当AB:EC=BP:CP时能得到△ABP与△ECP相似,
而E是CD的中点,
∴BP=2CP,即P为BC的三等份点.
故答案为BP=2CP.
点评:本题考查了三角形相似的判定定理:如果两个三角形有两组对应角相等,那么这两个三角形相似;如果两个三角形有两组对应边的比相等,并且它们的夹角也相等,那么这两个三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案