精英家教网 > 初中数学 > 题目详情
某商品的进价为每件30元.售价为每件70元时,每天可卖出60件,现需降价处理,且经市场调查:每降价1元,每关可多卖出2件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每天售出商品的利润为y元,请写出y与x的函数关系式;
(2)当每件售价多少元时,每天的利润最大?最大利润是多少?
【答案】分析:(1)由进价为每件30元.售价为每件70元,可求得每件盈利多少,然后根据题意即可得y=(40-x)(60+2x),整理即可求得y与x的函数关系式;
(2)根据二次函数的最值问题,将(1)中的二次函数配方为顶点式,即可求得答案.
解答:解:(1)∵进价为每件30元.售价为每件70元,
∴每件盈利70-30=40(元),
∴y=(40-x)(60+2x)=-2x2+20x+2400,
∴y与x的函数关系式为:y=-2x2+20x+2400;

(2)∵y=-2x2+20x+2400=-2(x-5)2+2450,
∴当降价5元时,利润最大且为2450元.
点评:此题考查了二次函数的实际应用问题.此题难度适中,解题的关键是理解题意,求得二次函数的解析式,然后根据二次函数的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)当售价的范围是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商品的进价为每件40元,售价为每件60元时,每个月可卖出800件;如果每件商品的售价每上涨1元,则每个月少卖20件.设每件商品售价为x元,每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大销售利润?最大的月销售利润是多少元?
(3)物价部门规定每件商品的利润率不高于100%,商家为了使每个月的销售利润不低于10000元,如何定价,商品的月销售量最大?最大销售量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价一元,每星期要少卖出10件.设该商品定价为每件x元.
(1)该商店每星期的销售量是
900-10x
900-10x
件(用含x的代数式表示);
(2)设商场每星期获得的利润为y元,求y与x的函数关系式;
(3)该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•巴中)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如调整价格进行涨价销售,每涨价一元,每星期要少卖出10件.该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

同步练习册答案