精英家教网 > 初中数学 > 题目详情
17.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中红球的数量为7个.

分析 估计利用频率估计概率可估计摸到红球的概率为0.7,然后根据概率公式计算这个口袋中红球的数量.

解答 解:因为共摸了100次球,发现有71次摸到红球,
所以估计摸到红球的概率为0.7,
所以估计这个口袋中红球的数量为10×0.7=7(个).
故答案为7.

点评 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,下列是由同种型号的黑白两种颜色的正三角形瓷砖按一定规律铺设的图形.仔细观察图形可知:
图①有1块黑色的瓷砖,可表示为1=$\frac{(1+1)×1}{2}$;
图②有3块黑色的瓷砖,可表示为1+2=$\frac{(1+2)×2}{2}$;

实践与探索:
(1)请在图③的虚线框内画出第3个图形;(只须画出草图)
(2)第4个图形有10块黑色的瓷砖;(直接填写结果)
(3)第n个图形有$\frac{1}{2}$n(n+1)块黑色的瓷砖(用含有n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.按照某规律填上适当的数值在横线上1,-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,$\frac{1}{5}$,-$\frac{1}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算(1+$\frac{1}{a-1}$)÷$\frac{{a}^{2}+2a}{{a}^{2}-1}$的结果是$\frac{a+1}{a+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列运算正确的是(  )
A.(3xy22=6x2y4B.-2mn2•$\frac{3}{2}$m2n3=-3m2n6
C.x7÷(-x)4=x3D.(3-π)0=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)($\sqrt{2}$+$\sqrt{3}$)($\sqrt{2}$-$\sqrt{3}$)
(2)($\sqrt{6}$-2$\sqrt{15}$)×$\sqrt{3}$-6$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.A、B两地相距20km,B在A的北偏东45°方向上,一森林保护中心P在A的北偏东30°和B的正西方向上,现计划修建的一条高速公路将经过AB(线段),已知森林保护区的范围在以点P为圆心,半径为4km的圆形区域内,请问这条高速公路会不会穿越保护区?为什么?(sin15°=0.259,cos15°=0.966,tan15°=0.268)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,在四边形ABCD中.
(1)求四边形的内角和;
(2)若∠A=∠C,∠B=∠D,判断AD与BC的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案