精英家教网 > 初中数学 > 题目详情
(2012•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则
BC
的长为(  )
分析:连接OB,由于AB是切线,那么∠ABO=90°,而∠ABC=120°,易求∠OBC,而OB=OC,那么∠OBC=∠OCB,进而求出∠BOC的度数,再利用弧长公式即可求出
BC
的长.
解答:解:连接OB,
∵AB与⊙O相切于点B,
∴∠ABO=90°,
∵∠ABC=120°,
∴∠OBC=30°,
∵OB=OC,
∴∠OCB=30°,
∴∠BOC=120°,
BC
的长为
nπr
180
=
120×π×3
180
=2π,
故选B.
点评:本题考查了切线的性质、弧长公式,解题的关键是连接OB,构造直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-
3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是(  )

查看答案和解析>>

同步练习册答案