精英家教网 > 初中数学 > 题目详情

【题目】 如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=BAC=90°AD=AEAB=AC.给出下列结论:①BD=CE;②BC=DC;③∠ABD+ECB=45°;④BDCE.其中正确的结论是(  )

A.①②③④B.②④C.①②③D.①③④

【答案】D

【解析】

根据等腰直角三角形的性质,全等三角形的判定与性质逐一判断即可.

解:∵∠DAE=BAC=90°AD=AEAB=AC

∴∠DAE+EAB=BAC+EAB

∴∠DAB=AEC

∴△AEC≌△DAESAS),

BD=CE

①正确;

∵∠DBA=ACE

∴∠ABD+ECB=45°

③正确;

∵∠AEC=BDA=45°

∴∠DEC=90°

BDCE

∴④正确;

BCDC不能判断是否相等,故②错误;

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.

(1)该记者本次一共调査了 名行人;

(2)求图1中④所在扇形的圆心角,并补全图2;

(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,AB是⊙O的直径,OFAB,交AC于点F,点EAB的延长线上,射线EM经过点C,且∠ACE+AFO=180°.

(1)求证:EM是⊙O的切线;

(2)若∠A=E,BC=,求阴影部分的面积.(结果保留和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.

各部门人数及每人所创年利润统计表

部门

员工人数

每人所创的年利润/万元

A

5

10

B

8

C

5

(1)在扇形图中,C部门所对应的圆心角的度数为___________;

在统计表中,___________,___________;

(2)求这个公司平均每人所创年利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分)如图,△ABC三个顶点的坐标分别为A24),B11),C43).

1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;

2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2

3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市从 2018 1 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.

(1)求 A、B 两种型号电动自行车的进货单价;

(2)若 A 型电动自行车每辆售价为 2800 ,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y m 之间的函数关系式;

(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB5AD3,动点P满足SPABS矩形ABCD,则点PAB两点距离之和PA+PB的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个正整数x的首位数字与末位数字先立方再求和得到一个新数(若x10,则直接将x立方得到新数),定义为Mx)运算.例如:M2)=238M31)=33+1328M102)=13+239,规定对某个正整数x进行第一次Mx)运算记作M1x),第二次Mx)运算记作M2x),……,第nMx)运算记作Mnx),例如:M12)=238M22)=83512M32)=53+23133.

1)求M23)和M20173);

2)若M5n3)=520,求正整数n的最小值.

查看答案和解析>>

同步练习册答案