精英家教网 > 初中数学 > 题目详情
(2013•抚顺)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)
分析:(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可;
(2)求出∠BOD=∠GOB,求出∠BOD的度数,根据弧长公式求出即可.
解答:(1)证明:连接BD、OD,
∵AB是⊙O直径,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴AD=DC,
∵AO=OB,
∴DO∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD为半径,
∴DE是⊙O切线;

(2)解:∵DG⊥AB,OB过圆心O,
∴弧BG=弧BD,
∵∠A=35°,
∴∠BOD=2∠A=70°,
∴∠BOG=∠BOD=70°,
∴∠GOD=140°,
∴劣弧DG的长是
140π×5
180
=
35
9
π.
点评:本题考查了弧长公式,切线的判定,平行线性质和判定,圆周角定理,等腰三角形的性质和判定,三角形的中位线等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•抚顺)如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,-2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是
(2,-4)
(2,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.
(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

同步练习册答案