精英家教网 > 初中数学 > 题目详情
12.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?
时间x(天) 1≤x<9 9≤x<15 x≥15
售价(元/斤) 第1次降价后的价格第2次降价后的价格  
销量(斤) 80-3x120-x 
储存和损耗费用(元) 40+3x3x2-64x+400
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

分析 (1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;
(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价-进价)×销量-费用列函数关系式,并根据增减性求最大值,作对比;
(3)设第15天在第14天的价格基础上最多可降a元,根据第15天的利润比(2)中最大利润最多少127.5元,列不等式可得结论.

解答 解:(1)设该种水果每次降价的百分率是x,
10(1-x)2=8.1,
x=10%或x=190%(舍去),
答:该种水果每次降价的百分率是10%;
(2)当1≤x<9时,第1次降价后的价格:10×(1-10%)=9,
∴y=(9-4.1)(80-3x)-(40+3x)=-17.7x+352,
∵-17.7<0,
∴y随x的增大而减小,
∴当x=1时,y有最大值,
y=-17.7×1+352=334.3(元),
当9≤x<15时,第2次降价后的价格:8.1元,
∴y=(8.1-4.1)(120-x)-(3x2-64x+400)=-3x2+60x+80=-3(x-10)2+380,
∵-3<0,
∴当9≤x≤10时,y随x的增大而增大,
当10<x<15时,y随x的增大而减小,
∴当x=10时,y有最大值,
y=380(元),
综上所述,y与x(1≤x<15)之间的函数关系式为:y=$\left\{\begin{array}{l}{-17.7x+352(1≤x<9)}\\{-3{x}^{2}+60x+80(9≤x<15)}\end{array}\right.$,
第10天时销售利润最大;
(3)设第15天在第14天的价格基础上最多可降a元,
由题意得:380-127.5≤(4-a)(120-15)-(3×152-64×15+400),
252.5≤105(4-a)-115,
a≤0.5,
答:第15天在第14天的价格基础上最多可降0.5元.

点评 本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x的取值,两个取值中的最大值才是最大利润.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.甲、乙相约去离家2000m的公园晨练,甲先出发一直匀速前行,乙后出发,如图是甲和乙所走的路程s(m)与时间t(min)的函数图象.
(1)求乙所走路程s与时间t的函数关系式;
(2)在速度不变情况下,乙希望和甲同时到达公园,则乙在步行过程中停留的时间需作怎样的调整?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知点M(1,1),N(1,-1),经过某点且平行于OM、ON或MN的直线,叫该点关于△OMN的“关联线”.
例如,如图1,点P(3,0)关于△OMN的“关联线”是:y=x+3,y=-x+3,x=3.
(1)在以下3条线中,是点(4,3)关于△OMN的“关联线”(填出所有正确的序号;
①x=4;②y=-x-5;③y=x-1.
(2)如图2,抛物线y=$\frac{1}{4}$(x-m)2+n经过点A(4,4),顶点B在第一象限,且B点有一条关于△OMN的“关联线”是y=-x+5,求此抛物线的表达式;
(3)在(2)的条件下,过点A作AC⊥x轴于点C,点E是线段AC上除点C外的任意一点,连接OE,将△OCE沿着OE折叠,点C落在点C′的位置,当点C′在B点关于△OMN的平行于MN的“关联线”上时,满足(2)中条件的抛物线沿对称轴向下平移多少距离,其顶点落在OE上?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是(  )
A.20cmB.18cmC.2$\sqrt{5}$cmD.3$\sqrt{2}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分  组频数频率
第一组(0≤x<15)30.15
第二组(15≤x<30)a0.3
第三组(30≤x<45)70.35
第四组(45≤x<60)4b
(1)频数分布表中a=6,b=0.2,并将统计图补充完整;
(2)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧$\widehat{CD}$于点P,Q,且点P,Q在AB异侧,连接OP.
(1)求证:AP=BQ;
(2)当BQ=4$\sqrt{3}$时,求$\widehat{QD}$的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,求OC的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.学校国旗护卫队成员的身高分布如下表:
身高/cm159160161162
人数71099
则学校国旗护卫队成员的身高的众数和中位数分别是(  )
A.160和160B.160和160.5C.160和161D.161和161

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为$\widehat{AN}$的中点,P是直径MN上一动点.
(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).
(2)求PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.△ABC在直角坐标系中位置如图所示,把△ABC向右平移3个单位,再向上平移1个单位得△A′B′C′.
(1)在图中画出△A′B′C′,并写出△ABC中的点A及其平移后的点A′的坐标;
(2)求出△A′B′C′的面积.

查看答案和解析>>

同步练习册答案