精英家教网 > 初中数学 > 题目详情
如图,已知圆内接四边形ABCD中,对角线AD是⊙O的直径,AB=BC=CD=2,E是的中点,则△ADE的面积是   
【答案】分析:四边形ABCD是梯形,连接OB,则OBCD是菱形,即可求得AD的长,而△AED是等腰直角三角形,就可求得△ADE的面积.
解答:解:连接EO,
∵AB=BC=CD=2,
∴∠AOB=180÷3=60°,
∴△AOB是等边三角形,
那么OA=AB=2,那么AD=2OA=4.
∵E是的中点,
∴AE=DE,
∴EO⊥AD,
∵EO=2,
∴△ADE的面积=×4×2=4.
点评:本题用到的知识点为:弦相等,那么所对的圆心角也相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知圆内接四边形ABCD中,对角线AD是⊙O的直径,AB=BC=CD=2,E是
AD
的中点,则△ADE的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠精英家教网BCM=∠DCN.
求证:(1)M为BD的中点;
(2)
AN
CN
=
AM
CM

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.
求证:(1)M为BD的中点;
(2)数学公式

查看答案和解析>>

科目:初中数学 来源:第5章《中心对称图形(二)》中考题集(57):5.7 正多边形与圆(解析版) 题型:填空题

如图,已知圆内接四边形ABCD中,对角线AD是⊙O的直径,AB=BC=CD=2,E是的中点,则△ADE的面积是   

查看答案和解析>>

科目:初中数学 来源:2010年浙江省宁波市慈溪中学保送生招生考试数学模拟试卷(三)(解析版) 题型:解答题

如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.
求证:(1)M为BD的中点;
(2)

查看答案和解析>>

同步练习册答案