精英家教网 > 初中数学 > 题目详情
19.利用不等式的性质解下列不等式,并在数轴上表示其解集:
(1)-3x+2<2x+3;(2)$\frac{1}{3}$x≥$-\frac{2}{3}$x-2.

分析 (1)根据不等式的性质可以得到不等式的解集,然后在数轴上表示出来即可;
(2)根据不等式的性质可以得到不等式的解集,然后在数轴上表示出来即可解答本题.

解答 解:(1)-3x+2<2x+3
不等式两边同时减2,得
-3x<2x+1
不等式两边同时减2x,得
-5x<1
两边同时除以-5,得
x>$-\frac{1}{5}$,
故原不等式的解集是x>$-\frac{1}{5}$,在数轴上表示如下所示,

(2)$\frac{1}{3}$x≥$-\frac{2}{3}$x-2
两边同时加$\frac{2x}{3}$,得
x≥-2
故原不等式的解集是x≥-2,在数轴上表示如下所示,

点评 本题考查解一元一次不等式、不等式的性质、在数轴上表示不等式的解集,解题的关键是明确不等式的性质,尤其是两边同时乘或除以一个负数,不等号的方向改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,△ABC中,DE∥BC,AE:EB=2:3,则DE:BC=2:5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在矩形ABCD中,将对角线CA绕点C逆时针旋转得到CE,连接AE,取AE的中点F,连接BF,DF.
(1)若点E在CB的延长线上,如图1.
①依题意补全图1;
②判断BF与DF的位置关系并加以证明;
(2)若点E在线段BC的下方,如果∠ACE=90°,∠ACB=28°,AC=6,请写出求BF长的思路.(可以不写出计算结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在菱形ABCD中,点O是对角线的交点,|$\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{DO}$|:|$\overrightarrow{CB}+\overrightarrow{CD}+\overrightarrow{AO}$|=$\sqrt{3}$,求菱形ABCD的内角度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.关于x的方程:x+$\frac{1}{x}$=c+$\frac{1}{c}$的解为x=c,x=$\frac{-1}{c}$;
x+$\frac{1}{x}$=c+$\frac{1}{c}$的解为x=c或x=$\frac{1}{c}$;
x+$\frac{2}{x}$=c+$\frac{2}{c}$的解为x=c,x=$\frac{2}{c}$;
x+$\frac{3}{x}$=c+$\frac{3}{c}$的解为x=c,x=$\frac{3}{c}$;

根据材料解决下列问题:
(1)方程x+$\frac{1}{x}$=$\frac{5}{2}$的解是x=2,x=$\frac{1}{2}$;
(2)猜想方程x+$\frac{m}{c}$=c+$\frac{m}{c}$(m≠0)的解,并将所得的解代入方程中检验;
(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.
请用这个结论解关于x的方程:x+$\frac{2}{x-1}$=a+$\frac{2}{a-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解下列不等式:并把它们的解集表示在数轴上:
(1)3x+2≤8;(2)-$\frac{1}{4}$x+2<-8-2x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.证明:点(2m,n2)不在第三、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的函数,画出这些函数的图象.
(1)y=x+1;(2)y=$\frac{2}{x}$.

查看答案和解析>>

同步练习册答案