精英家教网 > 初中数学 > 题目详情
(2013•贵阳)已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF的延长线交⊙O于点D,且AE=BF,∠EOF=60°.
(1)求证:△OEF是等边三角形;
(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)
分析:(1)作OC⊥AB于点C,由OC⊥AB可知AC=BC,再根据AE=BF可知EC=FC,因为OC⊥EF,所以OE=OF,再由∠EOF=60°即可得出结论;
(2)在等边△OEF中,因为∠OEF=∠EOF=60°,AE=OE,所以∠A=∠AOE=30°,故∠AOF=90°,再由AO=10可求出OF的长,根据S阴影=S扇形AOD-S△AOF即可得出结论.
解答:(1)证明:作OC⊥AB于点C,
∵OC⊥AB,
∴AC=BC,
∵AE=BF,
∴EC=FC,
∵OC⊥EF,
∴OE=OF,
∵∠EOF=60°,
∴△OEF是等边三角形;

(2)解:∵在等边△OEF中,∠OEF=∠EOF=60°,AE=OE,
∴∠A=∠AOE=30°,
∴∠AOF=90°,
∵AO=10,
∴OF=
10
3
3

∴S△AOF=
1
2
×
10
3
3
×10=
50
3
3
,S扇形AOD=
90π
360
×102=25π,
∴S阴影=S扇形AOD-S△AOF=25π-
50
3
3
点评:本题考查的是垂径定理,涉及到等边三角形的判定与性质、直角三角形的性质及扇形的面积等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•贵阳)已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是
m≥-2
m≥-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳模拟)如图1,已知∠EOF,点B、C在射线OF上,四边形ABCD是平行四边形,AC、BD相交于点M,连接OM.
(1)当OM⊥AC时,求证:OA=OC.
(2)如图2,当∠EOF=45°时,且四边形ABCD是边长为a的正方形时,求OM的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.
(1)顶点P的坐标是
(-1,4)
(-1,4)

(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.

查看答案和解析>>

同步练习册答案