精英家教网 > 初中数学 > 题目详情

【题目】某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.

收集数据 从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:

排球 10 9.5 9.5 10 8 9 9.5 9

7 10 4 5.5 10 9.5 9.5 10

篮球 9.5 9 8.5 8.5 10 9.5 10 8

6 9.5 10 9.5 9 8.5 9.5 6

整理、描述数据 按如下分数段整理、描述这两组样本数据:

4.0x5.5

5.5x7.0

7.0x8.5

8.5x10

10

排球

1

1

2

7

5

篮球

(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)

分析数据 两组样本数据的平均数、中位数、众数如下表所示:

项目

平均数

中位数

众数

排球

8.75

9.5

10

篮球

8.81

9.25

9.5

得出结论

(1)如果全校有160人选择篮球项目,达到优秀的人数约为_____人;

(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.

你同意______ 的看法,理由为__________.(至少从两个不同的角度说明推断的合理性)

【答案】130小明平均数接近,而排球成绩的中位数和众数都较高.

【解析】

(1)根据题意可补全表格成绩,可知选择篮球项目达到优秀的人数为13人,进而可求出答案.

(2)(3)根据平均数、中位数、众数的概念进行分析比较即可.

根据题中数据,补全表格成绩:

人数

项目

4.0x5.5

5.5x7.0

7.0x8.5

8.5x10

10

排球

1

1

2

7

5

篮球

0

2

1

10

3

(1)由表中可知,篮球项目优秀的人数有13人,所以160人中达到优秀的人数约为160×=130(人);

故答案为:130;

(2)同意小明的看法,理由为:

平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需要支持判断结论)

故答案为:小明,平均数接近,而排球成绩的中位数和众数都较高.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.

(1)∠ACB=   °,理由是:   

(2)猜想△EAD的形状,并证明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学我最喜爱的体育项目进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:

(1)该班共有_____名学生;

(2)补全条形统计图;

(3)在扇形统计图中,乒乓球部分所对应的圆心角度数为_____

(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△BDE是等腰直角三角形,∠ABC=DBE=90°,点DAC.

1)求证:△ABD≌△CBE

2)若DB=1,求AD2+CD2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图,如图所示,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1S2S3,若正方形EFGH的边长为4,则S1+S2+S3的值为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点A20)的两条直线分别交轴于BC,其中点B在原点上方,点C在原点下方,已知AB=.

1)求点B的坐标;

2)若△ABC的面积为4,求的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C90°AC3BC4.分别以ABACBC为边在AB的同侧作正方形ABEFACPQBCMN,四块阴影部分的面积分别为S1S2S3S4.则S1S2+S3+S4等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

同步练习册答案