精英家教网 > 初中数学 > 题目详情

如图所示,已知正方形ABCD边长为4,点M、N分别在边BC、CD上(点M、N都不与点B、C、D重合),且AM⊥MN.
(1)求证:Rt△ABM∽Rt△MCN;
(2)求证:△AMN不可能是等腰直角三角形;
(3)探究:当BM取何值时,以A,M,N为顶点的三角形与△ABM相似?并说明理由.

(1)证明:∵四边形ABCD为正方形,
∴∠B=∠C=90°,
又∵AM⊥MN,
∴∠AMN=90°,
∴∠AMB+∠NMC=90°,
而∠AMB+∠BAM=90°,
∴∠BAM=∠NMC,
∴Rt△ABM∽Rt△MCN;

(2)证明:若△AMN是等腰直角三角形时,AM=MN.
∵由(1)知,Rt△ABM∽Rt△MCN,
==1,
∴AB=MC,
∴点M与点B重合,点N与点C重合,这与已知条件“点M、N都不与点B、C、D重合”相矛盾,
∴△AMN不可能是等腰直角三角形;

(3)解:∵∠B=∠AMN=90°,
∴要使Rt△ABM∽Rt△AMN,必须有=,即=
∵Rt△ABM∽Rt△MCN,
=
∴BM=MC,
∴当点M运动到BC的中点时,Rt△ABM∽Rt△AMN,此时BM=2.
分析:(1)根据正方形的性质得∠B=∠C=90°,∠AMB+∠BAM=90°,又∠AMN=90°,则∠AMB+∠NMC=90°,得到∠BAM=∠NMC,根据相似三角形的判定即可得到结论;
(2)若△AMN是等腰直角三角形时,相似Rt△ABM与Rt△MCN的对应边不成比例;
(3)①已知了这两个三角形中相等的对应角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么两组直角边就应该对应成比例,即AM:MN=AB:BM,根据(1)的相似三角形可得出
AM:MN=AB:MC,因此BM=MC,M是BC的中点.即BM=2.
②同理,当
点评:本题考查了相似三角形的判定与性质:有两组内角分别对应相等的两三角形相似;相似三角形对应边的比相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

33、如图所示,已知正方形ABCD,延长CB至E,连接AE,过点A作AF⊥AE交DC于F.
求证:△ADF≌△ABE.

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图所示,已知正方形ABCD,E为BC上任意一点,延长AB至F,使BF=BE,AE的延长线交CF于G,
试说明:(1)AE=CF;(2)AG⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•尤溪县质检)如图所示,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是
(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知正方形ABCD的面积是8平方厘米,正方形EFGH的面积是62平方厘米,BC落在EH上,△ACG的面积是4.9平方厘米,则△ABE的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知正方形OABC的面积为9,点B在函数y=
k
x
(k>0,x>0)
的图象上,点P(m,n)(6≤m≤9)是函数y=
k
x
(k>0,x>0)
的图象上动点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,若设矩形OEPF和正方形OABC不重合的两部分的面积和为S.
(1)求B点坐标和k的值;
(2)写出S关于m的函数关系和S的最大值.

查看答案和解析>>

同步练习册答案