精英家教网 > 初中数学 > 题目详情
如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是(    )
A.y=(x+1)2-1B.y=(x+1)2+1
C.y=(x-1)2+1D.y=(x-1)2-1
C

试题分析:首先根据A点所在位置设出A点坐标为(m,m),再根据,利用勾股定理求出m的值,然后根据抛物线平移的性质求解即可.
∵A在直线上,
∴设A(m,m),


解得舍去),

∴A(1,1),
∴抛物线解析式为
故选C.
点评:解题的关键是求出A点坐标,同时熟练掌握抛物线平移的性质:左加右减,上加下减.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y轴正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.

(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25﹪设每双鞋的成本价为元.

(1)试求的值;
(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为(万元)时,产品的年销售量将是原来年销售量的倍,且之间的关系满足.请根据图象提供的信息,求出之间的函数关系式;
(3)在(2)的条件下求年利润S(万元)与广告费(万元)之间的函数关系式,并请回答广告费(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?(注:年利润S=年销售总额-成本费-广告费)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为 [m,1-m,-1]的函数的一些结论:
① 当m=-1时,函数图象的顶点坐标是(1,0);
② 当m>0时,函数图象截x轴所得的线段长度大于1;
③ 当m<0时,函数在x>时,y随x的增大而减小;
④ 不论m取何值,函数图象经过一个定点.
其中正确的结论有            ( )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(     )
A.(0,1)B.(0,一1)C.(1,0)D.(一1,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
温度/℃
……
-4
-2
0
2
4
4.5
……
植物每天高度增长量/mm
……
41
49
49
41
25
19.75
……
由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;
(2)温度为多少时,这种植物每天高度的增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数为常数),当取不同的值时,其图象构成一个“抛物线系”.下图分别是当时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是__________________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数的自变量x的取值范围是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,E是正方形ABCD的边AB上的动点, EF⊥DE交BC于点F.若正方形的边长为4, AE=,BF=.则 的函数关系式为          

查看答案和解析>>

同步练习册答案