精英家教网 > 初中数学 > 题目详情
如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).

(1)求点C的坐标;
(2)当0<t<5时,求S与t之间的函数关系式,并求S的最大值;
(3)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
(1)(3,);(2)当0<t≤时,S=-2(t-2+,当≤t<5时,S=4(t-5)2;(3).

试题分析:(1)利用已知函数解析式,求两直线的交点,得点C的坐标即可;
(2)根据几何关系把s用t表示,注意当MN在AD上时,这一特殊情况,进而分类讨论得出;
(3)利用(2)中所求,结合二次函数最值求法求出即可.
试题解析:(1)由题意,得
,解得:
∴C(3,);
(2)∵直线分别与x轴、y轴交于A、B两点,
∴y=0时,,解得;x=8,
∴A点坐标为;(8,0),
根据题意,得AE=t,OE=8-t.
∴点Q的纵坐标为(8-t),点P的纵坐标为-(8-t)+6=t,
∴PQ=(8-t)-t=10-2t.
当MN在AD上时,10-2t=t,
∴t=
当0<t≤时,S=t(10-2t),即S=-2t2+10t.
<t<5时,S=(10-2t)2,即S=4t2-40t+100;
当0<t≤时,S=-2(t-2+
∴t=时,S最大值=
≤t<5时,S=4(t-5)2
∵t<5时,S随t的增大而减小,
∴t=时,S最大值=

∴S的最大值为
(3)点(4,)在正方形PQMN内部时t的取值范围是.
考点: 一次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费(元)的函数关系如图所示。
(1)求出当月用水量不超过5吨时,y与x之间的函数关系式;
(2)某居民某月用水量为8吨,求应付水费是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P(2,).

(1)请判断的形状并说明理由.
(2)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥轴于F,EB⊥轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.
求:① S与t之间的函数关系式.
② 当t为何值时,S最大,并求S的最大值

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=(k为常数,k≠1)
(1)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一次函数的图象经过第一、二、三象限,则的取值范围是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为,正方形除去圆部分的面积为(阴影部分),则的大致图象为( )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-2x+4与x轴交于A点,与y轴交于B点.
(1)求A、B两点的坐标;
(2)求直线y=-2x+4与坐标轴围成的三角形的面积.

查看答案和解析>>

同步练习册答案