精英家教网 > 初中数学 > 题目详情
如图,在正方形网格上有一个△DEF.
(1)作△DEF关于直线HG的轴对称图形;
(2)作△DEF的EF边上的高;
(3)若网格上的最小正方形边长为1,求△DEF的面积.
分析:(1)根据网格结构找出点D、E、F关于直线HG的对称点D′、E′、F′的位置,然后顺次连接即可;
(2)根据网格结构以及EF的位置,过点D作小正方形的对角线,与FE的延长线相交于H,DH即为所求作的高线;
(3)DE为底边,点F到DE的距离为高,根据三角形的面积公式列式进行计算即可得解.
解答:解:(1)如图所示,△D′E′F′即为所求作的△DEF关于直线HG的轴对称图形;

(2)如图所示,DH为EF边上的高线;

(3)△DEF的面积=
1
2
×3×2=3.
点评:本题考查了利用轴对称变换作图,比较简单,熟练掌握网格结构准确找出对应点的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在正方形网格上的三角形①,②,③中,与△ABC相似的三角形有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在正方形网格上,若使△ABC∽△PBD,则点P应在(  )处.
A、P1B、P2C、P3D、P4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形网格上有三个三角形,则与△FDE相似的三角形是
△HGR
△HGR

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形网格上有△ABC和△DEF.
(1)这两个三角形相似吗?如果相似,求出△ABC和△DEF的相似比;
(2)计算这两个图形的面积比;
(3)根据上面的计算结果,你有何猜想?

查看答案和解析>>

科目:初中数学 来源: 题型:

作图计算题.
如图,在正方形网格上有一个△ABC(三个顶点均在格点上,网格上的最小正方形的边长为1).
(1)作△ABC关于直线HG的轴对称图形(不写作法);
(2)画出△ABC中BC边上的高(需写出结论);
(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.

查看答案和解析>>

同步练习册答案