精英家教网 > 初中数学 > 题目详情

【题目】已知数3.3,-2,0,,-3.5.

(1) 比较这些数的大小并用“<”号连接起来;

(2) 比较这些数的绝对值的大小并将这些数的绝对值用“>”号连接起来;

(3) 比较这些数的相反数的大小并将这些数的相反数用“<”号连接起来.

【答案】(1)-3.5<-2<0<<3.3;(2)3.5>3.3>2>>0;(3)-3.3<-<0<2<3.5

【解析】

(1)利用有理数大小比较法则进行比较;

(2)先求得每个数的绝对值,再根据有理数大小比较法则进行比较大小;

(3) 先求得每个数的相反数,再根据有理数大小比较法则进行比较大小;

(1)正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小可得:-3.5<-20

(2)|-3.5|=3.5,|-2|=2,|0|=0,||=

3.53.320.

(3) 因为3.3的相反数是3.3,-2的相反数是20的相反数是0和相反数是,-3.5的相反数是3.5,

所以-3.3<-023.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(  )

A. A和点B位于直线l的两侧,如果A、Bl的距离相等,那么它们关于直线l对称

B. 两个全等的图形一定关于某条直线对称

C. 如果三角形中有一边的长度是另一边长度的一半,则这条边所对的角是30°

D. 等腰三角形一定是轴对称图形,对称轴有1条或者3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

组别

成绩x

频数(人数)

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

请结合图表完成下列各题:

(1)求表中a的值;

(2)请把频数分布直方图补充完整;

(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列解答过程:(1)如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.

(2)如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,四边形ABCD中,∠A与∠B互补,∠C=90°,DEABE为垂足.若∠EDC=60°,求∠BA及∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交与点A1 , 且其对称轴分别交抛物线C,C1于点B1 , D1 , 此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x轴的正半轴交与点A2 , 且其对称轴分别交抛物线C1 , C2于点B2 , D2 , 此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3 . 请探究以下问题:

(1)填空:a1= , b1=
(2)求出C2与C3的解析式;
(3)按上述类似方法,可得到抛物线Cn:yn=anx(x﹣bn)与正方形OBnAnDn(n≥1).
①请用含n的代数式直接表示出Cn的解析式;
②当x取任意不为0的实数时,试比较y2015与y2016的函数值的大小并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O在直线AB,A1,A2,A3,…在射线OA,B1,B2,B3,…在射线OB,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点MO点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为(  ).

A. 5050π B. 5050π+101 C. 5055π D. 5055π+101

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下两小题后作出相应的解答:

(1)同位角相等,两直线平行两直线平行,同位角相等,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题角平分线上的点到角两边的距离相等的逆命题,并指出逆命题的题设和结论;

(2)根据以下语句作出图形,并写出该命题的文字叙述.

已知:过直线AB上一点O任作射线OCOMON分别平分AOCBOC,则OMON.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

同步练习册答案