精英家教网 > 初中数学 > 题目详情
20.在△OAB中,∠OAB=90°,∠AOB=30°,OB=4.以OB为边,在△OAB外作等边△OBC,E是OC上的一点.
(1)如图1,当点E是OC的中点时,求证:四边形ABCE是平行四边形;
(2)如图2,点F是BC上的一点,将四边形ABCO折叠,使点C与点A重合,折痕为EF,求OE的长.

分析 (1)欲证明四边形ABCE是平行四边形,只要证明CE=AB,CE∥AB即可.
(2)设OE=x,在RT△EOA中,根据OE2+OA2=AE2列出方程即可解决问题.

解答 (1)证明:如图1,∵△OBC为等边三角形,
∴OC=OB,∠COB=60°.,
∵点E是OC的中点,
∴EC=$\frac{1}{2}$OC=$\frac{1}{2}$OB,
在△OAB中,∠OAB=90°,
∵∠AOB=30°,
∴AB=$\frac{1}{2}$OB,∠COA=90°,
∴CE=AB,∠COA+∠OAB=180°,
∴CE∥AB,
∴四边形ABCE是平行四边形.
(2)解:如图2,∵四边形ABCO折叠,点C与点A重合,折痕为EF,
∴△CEF≌△AEF,
∴EC=EA,
∵OB=4,
∴OC=BC=4,
在△OAB中,∠OAB=90°,
∵∠AOB=30°,
∴OA=$2\sqrt{3}$,
在Rt△OAE中,由(1)知:∠EOA=90°,
设OE=x,
∵OE2+OA2=AE2
∴x2+${({2\sqrt{3}})^2}$=(4-x)2
解得,x=$\frac{1}{2}$,
∴OE=$\frac{1}{2}$.

点评 本题考查平行四边形的判定、等边三角形的性质、翻折变换等知识,解题的关键是学会用方程的思想思考问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.小雨找了四根木条,长度分别是3cm、8cm,10cm、11cm,他想选择其中三根组成一个三角形,可能的选法有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在矩形ABCD中,E为CD边上的点,将△BCE沿BE折叠,点C恰好落在AD边上的点F处.
(1)求证:△ABF∽△DFE.
(2)若AB=3,AF=4,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,CD垂直平分AB于点D,连接CA,CB,将BC沿BA的方向平移,得到线段DE,交AC于点O,连接EA,EC.
(1)求证:四边形ADCE是矩形;
(2)若CD=1,AD=2,求sin∠COD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在⊙O中,AB为⊙O的弦,半径OC⊥AB于点D,若OB的长为10,sin∠BOD=$\frac{4}{5}$,则AB的长为16.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算a6÷a3的结果等于a3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).
(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.口袋中有12个小球,其中红球x个,黄球(2x+1)个,其余为白球.甲从口袋中任意摸出1个球,若为黄球则甲获胜;然后甲将摸出的球放回口袋中,摇匀,乙从口袋中摸出一个球,若为白球则乙胜.当x为何值时,游戏是公平的?

查看答案和解析>>

同步练习册答案