精英家教网 > 初中数学 > 题目详情

某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:

价格x(元/个)

30

40

50

60

销售量y(万个)

5

4

3

2

同时,销售过程中的其他开支(不含造价)总计40万元.

(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.

(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?

(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

 

【答案】

解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,

,解得:

∴函数解析式为:y=x+8。

(2)根据题意得:

z=(x﹣20)y﹣40=(x﹣20)(x+8)﹣40=x2+10x﹣200=(x2﹣100x)﹣200

= [(x﹣50)2﹣2500]﹣200=(x﹣50)2+50,

<0,∴x=50,z最大=50。

∴该公司销售这种计算器的净得利润z与销售价格x)的函数解析式为z=x2+10x﹣200,销售价格定为50元/个时净得利润最大,最大值是50万元。

(3)当公司要求净得利润为40万元时,即(x﹣50)2+50=40,解得:x1=40,x2=60。

作函数图象的草图,

通过观察函数y=(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.

而y与x的函数关系式为:y=x+8,y随x的增大而减少,

∴若还需考虑销售量尽可能大,销售价格应定为40元/个。

【解析】

试题分析:(1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式。

(2)根据z=(x﹣20)y﹣40得出z与x的函数关系式,应用二次函数最值原理求解即可。

(3)首先求出40=(x﹣50)2+50时x的值,从而二次函数的性质根据得出x(元/个)的取值范围,结合一次函数的性质即可求得结果。 

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个) 30 40 50 60
销售量y(万个) 5 4 3 2
同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司销售一种进价为24元的产品,按标价的九折销售,则可获利20%,则此产品的标价为
32
32
元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)30405060
销售量y(万个)5432
同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:

价格x(元/个)

30

40

50

60

销售量y(万个)

5

4

3

2

同时,销售过程中的其他开支(不含造价)总计40万元.

(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.

(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?

(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源:2013年新疆乌鲁木齐市中考数学试卷(解析版) 题型:解答题

某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)30405060
销售量y(万个)5432
同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

同步练习册答案