精英家教网 > 初中数学 > 题目详情

如图所示,⊙的直径是它的两条切线,为射线上的动点(不与重合),切⊙,交,设

(1)求的函数关系式;

(2)若⊙与⊙外切,且⊙分别与

相切于点,求为何值时⊙半径为1.

 


答案:解:(1)如图所示,作,垂足为……………1分 

        ∵是⊙的两条切线

       ∴

        ∴四边形为矩形

……………2分 

        ∵切⊙

        ∴        

        ∴  ……………3分 

,得……………4分 

       即 )……………5分 

   (2)连接平分,……………6分 

∵⊙分别与相切,

的角平分线上,连接,则,作,垂

足为,则四边形为矩形                       ……………7分 

当⊙半径为1时,,   ……………8分 

……………9分 

……………10分 

,即当时,⊙半径为1.  ……………11分 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点精英家教网为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,⊙O的直径AB=2,AD,BC是它的两条切线,且CD与⊙O相切于点E,交AD,BC于精英家教网点D,C,设AD=x,BC=y.
(1)求证:AD+BC=CD;
(2)求y关于x的函数关系,并画去它的图象;
(3)若x,y是方程2t2-5t+m=0的两根,求x,y的值;
(4)求四边形的ABCD的面积S,(用字母表示)并证明S≥2.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,⊙O的直径AB垂直于弦CD,AB、CD相交于点E,∠COD=100°,求∠COE,∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,⊙O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根. P是⊙O外一点,过点P作⊙O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与⊙O的交点.若PA,PB,PC的长都是正整数,且PB的长不是合数,求PA2+PB2+PC2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求圆心O到CD的距离.

查看答案和解析>>

同步练习册答案