【题目】已知∠ABC,∠ACB的平分线交于I.
(1)根据下列条件分别求出∠BIC的度数:
①∠ABC=70°,∠ACB=50°;
②∠ACB+∠ABC=120°;
③∠A=90°;
④∠A=n°.
(2)你能发现∠BIC与∠A的关系吗?
【答案】(1)①∠BIC=120°;②∠BIC=120°;③∠BIC=135°;④∠BIC=90°+n°.
(2)∠BIC=90°+∠A
【解析】试题分析:(1)①已知∠ABC,∠ACB,由内角和定理求∠BAC,再根据角平分线性质求∠IBC+∠ICB,在△IBC中,由内角和定理求∠BIC的度数;
②已知∠ABC+∠ACB,由内角和定理求∠BAC,再根据角平分线性质求∠IBC+∠ICB,在△IBC中,由内角和定理求∠BIC的度数;
③已知∠A,由内角和定理求∠ABC+∠ACB,再根据角平分线性质求∠IBC+∠ICB,在△IBC中,由内角和定理求∠BIC的度数;
④已知∠A,由内角和定理求∠ABC+∠ACB,再根据角平分线性质求∠IBC+∠ICB,在△IBC中,由内角和定理求∠BIC的度数;
(2)∠BIC的大小不发生变化.可由角平分线的性质及三角形内角和定理求出∠BIC=90°+∠A.
试题解析:(1)①∵在△ABC中,∠ABC=70°,∠ACB=50°,
∴∠BAC=180°-∠ABC-∠ACB=60°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠IBC=∠ABC=35°,∠ICB=∠ACB=25°,
∴∠BIC=180°-∠IBC-∠ICB=120°;
②∵在△ABC中,∠ABC+∠ACB=120°,
∴∠BAC=180°-∠ABC-∠ACB=60°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠BIC=180°-∠IBC-∠ICB=120°;
③∵∠A=90°,
∴∠ABC+∠ACB=90°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠BIC=180°-∠IBC-∠ICB=135°;
④∵∠A=n°,
∴∠ABC+∠ACB=180°-n°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠BIC=180°-∠IBC-∠ICB=90°+n°;
(2)∠BIC的大小不发生变化.
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠BIC=180°-∠IBC-∠ICB,
=180°-(∠ABC+∠ACB),
=180°-(180°-∠A),
=90°+∠A,
科目:初中数学 来源: 题型:
【题目】我们知,3的正整数次幂:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,……,观察归纳,可得32007的个位数字是( )
A.1
B.3
C.7
D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2-2mx+4m-8的顶点为A
(1) 求证:该抛物线与x轴总有两个交点
(2) 当m=1时,直线BC:y=kx-2与该抛物线交于B、C两点,若线段BC被x轴平分,求k的值
(3) 以A为一个顶点作该抛物线的内接正三角形AMN(M、N两点在抛物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:关于x的二次函数y=x2+bx+c经过点(﹣1,0)和(2,6).
(1)求b和c的值.
(2)若点A(n,y1),B(n+1,y2),C(n+2,y3)都在这个二次函数的图象上,问是否存在整数n,使?若存在,请求出n;若不存在,请说明理由.
(3)若点P是二次函数图象在y轴左侧部分上的一个动点,将直线y=﹣2x沿y轴向下平移,分别交x轴、y轴于C、D两点,若以CD为直角边的△PCD与△OCD相似,请求出所有符合条件点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com