精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.

(1)求直线AC及抛物线的函数表达式;

(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP∶S△BPC=2∶3,求点P的坐标;

(3)设⊙Q的半径为l,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切?

答案:
解析:

  (1)解:(1)∵沿轴向下平移3个单位后恰好经过原点,

  ∴

  将代入,得.解得

  ∴直线AC的函数表达式为

  ∵抛物线的对称轴是直线

  ∴解得

  ∴抛物线的函数表达式为

  (2)如图,过点B作BD⊥AC于点D.

  ∵

  ∴

  ∴

  过点P作PE⊥x轴于点E,

  ∵PE∥CO,∴△APE∽△ACO,

  ∴

  ∴

  ∴,解得

  ∴点P的坐标为

  (3)(Ⅰ)假设⊙Q在运动过程中,存在与坐标轴相切的情况.

  设点Q的坐标为

  ①当⊙Q与y轴相切时,有,即

  ②当时,得,∴

  当时,得,∴

  ①当⊙Q与x轴相切时,有,即

时,得,即,解得,∴

  当时,得,即,解得,∴

  综上所述,存在符合条件的⊙Q,其圆心Q的坐标分别为

  (Ⅱ)设点Q的坐标为

  当⊙Q与两坐标轴同时相切时,有

  由,得,即

  ∵△=

  ∴此方程无解.

  由,得,即

  解得

  ∴当⊙Q的半径时,⊙Q与两坐标轴同时相切.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案