精英家教网 > 初中数学 > 题目详情
7.如图,AB∥CD,∠D=∠E=35,则∠B的度数为(  )
A.60°B.65°C.70°D.75°

分析 根据三角形的一个外角等于与它不相邻的两个内角的和,求出∠1,再根据两直线平行,同位角相等进行解答即可.

解答 解:如图,∵∠D=∠E=35°,
∴∠1=∠D+∠E=35°+35°=70°,
∵AB∥CD,
∴∠B=∠1=70°.
故选:C.

点评 本题考查了平行线的性质,三角形的外角性质,熟记各性质并准确识图是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图1所示的是由梯子AB和梯子AC搭成的“人字梯”,它的5个踩档把梯子等分成6份,梯子的第三踩档处有一条绑绳DE,将其抽象成图2,其中AB=AC=2米.
(1)若DE的长为60厘米,求两梯角之间的距离BC的长.
(2)若∠ABC=70°,小明想在人字梯的D,E处系上一根绳子确保用梯安全,在D,E处打结各需要0.3米的绳子,请你帮小明计算一下,他需要的绑绳的长度为多少米?此时梯子的顶端A离地面BC的高度为多少米?(结果精确到0.01厘米;参考数据:sin70°=0.9397,cos70°=0.3420,tan70°=2.7475)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C、D不重合).

(1)如图①,当α=90°时,求证:DE+DF=AD.
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为$DE+DF=\frac{1}{2}AD$,请给出证明.
(3)在(2)的条件下,将∠QPN绕点P旋转,若旋转过程中∠QPN的边PQ与边AD的延长线交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各式中,正确的是(  )
A.m2•m3=m6B.(2a+b)(a-b)=2a2+ab-b2
C.(5a+2b)(5a-3b)=25a2-6b2D.(x-y)(x2+xy+y2)=x3-y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快$\frac{1}{3}$,求李磊去时的平均速度是多少?
小芸同学解法如下:
解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1-$\frac{1}{3}$)x千米/时,由题意得:$\frac{72}{x}$+$\frac{72}{(1-\frac{1}{3})x}$=7,…
你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图所示,在每个边长都为1的小正方形组成的网格中,点A、B、C均为格点.
(Ⅰ)线段AB的长度等于5;
(Ⅱ)若P为线段AB上的动点,以PC、PA为邻边的四边形PAQC为平行四边形,当PQ长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列计算中,正确的是(  )
A.a•a=2aB.x+x4=x5C.x3•x2=x5D.2a2•a-1=2a3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数$\overline{abc}$(a≤c),在所有重新排列的三位数中,当|a+c-2b|最小时,称此时的$\overline{abc}$为t的“最优组合”,并规定F(t)=|a-b|-|b-c|,例如:124重新排序后为:142、214、因为|1+4-4|=1,|1+2-8|=5,|2+4-2|=4,所以124为124的“最优组合”,此时F(124)=-1.
(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0
(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,∠BAC=90°,AB=AC,点O是BC中点,点D、E分别在BA、AC的延长线上,且OD⊥OE,说明OD=OE.

查看答案和解析>>

同步练习册答案