精英家教网 > 初中数学 > 题目详情
如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
图象相交于A、B两点.
(1)求出这两个函数的解析式;
(2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,y1<y2
(1)由图象知反比例函数y2=
m
x
的图象经过点B(4,3),
3=
m
4

∴m=12,(1分)
∴反比例函数解析式为y2=
12
x
;(2分)
由图象知一次函数y1=kx+b的图象经过点A(-6,-2),B(4,3),
-6k+b=-2
4k+b=3
,解得
k=
1
2
b=1
,(3分)
∴一次函数解析式为y1=
1
2
x+1
.(4分)

(2)由图可知:当0<x<4或x<-6时,y1<y2.(5分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图:在平面直角坐标系中,△ABC是等腰直角三角形,∠ACB=Rt∠,CA⊥x轴,垂足为点A.点B在反比例函数y1=
4
x
(x>0)
的图象上.反比例函数y2=
2
x
(x>0)
的图象
经过点C,交AB于点D,则点D的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y1=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数y2=
k
x
(k≠0)的图象上.
(1)求点P′的坐标;
(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=
k1
x
的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=
k2
x
(x>0)的图象交于点D(n,-2).
(1)求k1和k2的值;
(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△ACE?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①双曲线的解析式为y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5

④AC+OB=12
5
,其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数y=
k
x
的图象经过点P(2,-1),则它的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,已知菱形ABCD的面积为3,顶点A在双曲线y=
k
x
上,CD与y轴重合,则k的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
k
x
(k≠0)图象经过点(1,2),并与直线y=2x+b交于点A(x1,y1),B(x2,y2),且满足(x1+x2)(1-x1x2)=3.
(1)求k的值;
(2)求b的值及点A,B的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

三角形的面积为15cm2,这时底边上的高ycm与底边xcm间的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案