精英家教网 > 初中数学 > 题目详情
如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A地立即停止运动.
(1)如果∠POA=90°,求点P运动的时间;
(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.

【答案】分析:(1)当∠POA=90°时,点P运动的路程为⊙O周长的,所以分两种情况进行分析;
(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.
解答:解:(1)当∠POA=90°时,点P运动的路程为⊙O周长的
设点P运动的时间为ts;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=3;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=9;
∴当∠POA=90°时,点P运动的时间为3s或9s.

(2)如图,当点P运动的时间为2s时,直线BP与⊙O相切
理由如下:
当点P运动的时间为2s时,点P运动的路程为4πcm,
连接OP,PA;
∵半径AO=12cm,
∴⊙O的周长为24πcm,
的长为⊙O周长的
∴∠POA=60°;
∵OP=OA,
∴△OAP是等边三角形,
∴OP=OA=AP,∠OAP=60°;
∵AB=OA,
∴AP=AB,
∵∠OAP=∠APB+∠B,
∴∠APB=∠B=30°,
∴∠OPB=∠OPA+∠APB=90°,
∴OP⊥BP,
∴直线BP与⊙O相切.
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,
AB
是半径为1的半圆弧,△AOC为等边三角形,D是
BC
上的一动点,则△COD的面积S的最大值是(  )
A、s=
3
4
B、s=
3
3
C、s=
3
2
D、s=
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绿园区模拟)如图,⊙O的半径为12,AB是⊙O的弦,并且OD⊥AB于点E,∠AOE=60°,则阴影部分的面积是
24π
24π
(结果保留π).

查看答案和解析>>

科目:初中数学 来源:2007年南京市初中毕业、升学统一考试数学试题 题型:059

如图,A是半径为12 cm的⊙O上的定点,动点P从A出发,以2π cm/s的速度沿圆周逆时针运动,当点P回到A地立即停止运动.

(1)如果∠POA=90°,求点P运动的时间;

(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2 s时,判断直线BP与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:第28章《圆》中考题集(04):28.1 圆的认识(解析版) 题型:选择题

如图,BE是半径为6的圆D的圆周,C点是上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值范围是( )

A.12<P≤18
B.18<P≤24
C.18<P≤18+6
D.12<P≤12+6

查看答案和解析>>

科目:初中数学 来源:第22章《圆(上)》常考题集(04):22.3 圆的对称性(解析版) 题型:选择题

如图,BE是半径为6的圆D的圆周,C点是上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值范围是( )

A.12<P≤18
B.18<P≤24
C.18<P≤18+6
D.12<P≤12+6

查看答案和解析>>

同步练习册答案